
Security Engineering Project

System Aware Cyber Security for an Autonomous Surveillance System
On Board an Unmanned Aerial Vehicle

Final Technical Report SERC-2014-TR-036-3

January 31, 2014

Principal Investigator: Dr. Barry Horowitz - University of Virginia

Co PI:

Dr. Peter Beling, Associate Professor - University of Virginia

Dr. Kevin Skadron - University of Virginia

Dr. Ron D. Williams - University of Virginia

Dr. William Melvin - Georgia Tech Research Institute

Report No. SERC-2014-TR-036-3
January 13, 2014

TO 104 RT 042 Contract Number: H98230-08-D-0171

Report No. SERC-2014-TR-036-3
January 13, 2014

 1

Copyright © 2014 Stevens Institute of Technology, Systems Engineering Research Center

This research was supported by the Department of Defense (DoD) through the Office of the Assistant
Secretary of Defense for Research and Engineering (ASD(R&E)).

The views and opinions of the author(s) do not reflect those of the DoD nor ASD(R&E)."

NO WARRANTY

THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

Report No. SERC-2014-TR-036-3 2

Executive Summary

The Systems Engineering Research Center (SERC) has developed a novel cyber security concept for
embedding security solutions into systems called System-Aware cyber security. The goal of the System-
Aware program is to develop low cost methods of protection against cyber exploits by our adversaries.
Working through the SERC, the University of Virginia (UVa) and the Georgia Tech Research Institute
(GTRI) have advanced the System-Aware cyber security concept and evaluated a number of specific
design patterns that are intended to be reusable across a variety of applications. These patterns include,
but are not limited to, employing diverse redundant components in critical subsystems, using voting
techniques across diverse redundant components for real-time discovery and elimination of infected
components, dynamically modifying the configuration of software components in systems through
virtual configuration hopping techniques, dynamically modifying the configuration of the
hardware/software components in systems through physical configuration hopping techniques, using
system specific data consistency-checking to determine if critical system information has been
manipulated, and where applicable, use of analog components as trusted elements to perform critical
security functions in systems. Furthermore, a decision support framework has been developed for use
by systems engineering teams in selecting a subset of available design patterns for integration into a
cyber-security system architecture.

To demonstrate the effectiveness of the System-Aware design patterns, specific ones were developed
for an unmanned aerial vehicle (UAV) application. The application to UAV-based systems was inspired
by the wide variety of subsystems that are used in UAV configurations, the range of potential cyber-
attacks that can seriously impact the critical missions of these systems, and the significant power, space
and performance constraints that System-Aware designs must address in order to operate in UAV-based
configurations.

During the Phase I effort the UVa/GTRI team achieved a number of accomplishments including:

 Creation of software and hardware in the loop simulators and emulators to enable the
testing of System-Aware cyber security solutions.

 Identification, selection, and design of potential cyber-attacks that could be utilized to
compromise the UAV’s ability to carry out its mission.

 Design of a prototype smart security Sentinel to host System-Aware cyber security solutions
to protect against the cyber-attacks.

 Design of a Sentinel for airborne use based on the SiCore SHIELD secure single board
computer.

The Phase II effort for conducting a flight demonstration of the System-Aware Sentinel has been
planned. Phase II will consist of the activities necessary to integrate the results of the Phase I effort into
the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft in order to create a flight-ready
demonstration. The GAUSS platform is a small research UAV with a widely used, commercial off-the-
shelf autopilot system and camera gimbal. The demonstration will show how the System-Aware
approach can be used to thwart cyber-attacks against autopilot systems and sensor systems.

Report No. SERC-2014-TR-036-3 3

Table of Contents
1 Project Status Overview .. 8

2 Project Emulation and Simulation Environments ... 9

2.1 UVa Piccolo II HiL Emulation Environment ... 9

2.2 GTRI HiL Emulation Environment .. 10

3 Review of Phase I Activities... 13

3.1 Relational System-Aware Cyber Assessment Methodology ... 13

3.1.1 Definitions ... 13

3.1.2 Methodology Process Steps .. 14

3.1.3 Vulnerability and Threat Analysis Process .. 16

3.2 Attack Development ... 23

3.2.1 Parameter-Based System Attack ... 23

3.2.2 GPS System Attacks ... 43

3.2.3 Gimbal System Attacks .. 53

3.2.4 Hardware Security Against Design and Manufacturing Attacks ... 55

3.3 Design and Development of the Super Secure, Smart Sentinel.. 57

3.3.1 Sentinel Platform Development.. 58

3.3.2 Parameter-Based Attack Detection, Mitigation, and Restoration 62

3.3.3 GPS System Attack Detection and Mitigation ... 67

3.3.4 Gimbal Attack Detection and Mitigation .. 79

3.3.5 Hardware Security Against Design and Manufacturing Attacks ... 83

3.4 Evaluative Criteria ... 88

4 Proposed Work for Phase II .. 90

4.1 Proposed Hardware Architecture for Flight Demonstration .. 90

4.2 Needed Development to Reach Next Milestones ... 93

4.2.1 Develop on-board and ground attacks ... 93

4.2.2 Development of the UAV Sentinel .. 95

4.2.3 Design and Build Integrated System ... 103

4.2.4 Ground Testing .. 103

4.2.5 Flight Testing ... 104

4.3 Required Activities, Distribution of Effort, Deliverables, Costs and Schedules 105

4.4 On-going Evaluative Questions and Early Outcomes .. 105

Report No. SERC-2014-TR-036-3 4

5 Appendix ... 109

5.1 Supporting Calculations for GPS System Attack ... 109

5.2 Code Examples for GPS ... 110

6 Appendix – System-Aware cyber Security – Human Factors .. 113

Report No. SERC-2014-TR-036-3 5

List of Figures

Figure 1. Basic HiL configuration for the Piccolo II. .. 10
Figure 2. The GTRI HiL emulation environment. ... 11
Figure 3. Data flow diagram for the GTRI HiL emulation environment. .. 12
Figure 4. ViewPoint user interface for streaming video created by the MetaVR scene generator 12
Figure 5. UAV Onboard Systems showing the four major system groups. ... 18
Figure 6. Influence diagram for used to understand the relationship between the UAV subsystems used
for navigation. ... 19
Figure 7. Influence diagram used to understand the relationship between the UAV subsystems used for
gathering surveillance data. .. 20
Figure 8. Cyber-taxonomy. .. 22
Figure 9. Attack Surface Concept Model. ... 23
Figure 10. System influence relational diagram for the UAV (aircraft) navigation system. 25
Figure 11. Top-Level overview of Concealed Major Trajectory Deviation attack. 27
Figure 12. Subtree for Alter Waypoints attack. .. 27
Figure 13. Subtree for Conceal Flight Trajectory attack. .. 28
Figure 14. Piccolo II HiL configuration with an Embedded Attack Platform to dynamically direct the UAV
to a specified waypoint during flight. The Embedded Attack Platform is a laptop connected to the Piccolo
II autopilot via a serial connection using the RS-232 protocol. .. 41
Figure 15. Embedded attack platform for masking the operator display on a SBC. 42
Figure 16. Piccolo II HiL configuration with Embedded Attack Platform to dynamically direct the UAV to a
specified waypoint during flight while masking the change from operator display. Attack is a plugin
embedded into the PCC. Embedded attack platform for masking the operator display is a SBC that sits
between the connection from the PCC and the ground station. ... 43
Figure 17. Camera gimbal influence diagram. .. 44
Figure 18. Attack tree for GPS attacks to alter georeference data. .. 45
Figure 19. Pruned Attack Tree. ... 47
Figure 20. Autopilot to Simulator communications. ... 51
Figure 21. Simulated attack configuration. ... 52
Figure 22. Example of GPS attack. .. 53
Figure 23. RS-232 Data Transmission. ... 57
Figure 24. CloudShield CS-2000 content processing platform with two deep packet inspection modules.
 .. 58
Figure 25. Comparison of CloudShield features to Sentinel requirements. ... 59
Figure 26. Raspberry Pi SBC. ... 60
Figure 27. Block diagram of the Sicore SHIELD Coprocessor. ... 61
Figure 28. Super secure smart Sentinel for protection with a designated cyber security officer. 63
Figure 29. Sentinel (CloudShield) using SBC to convert data from RS-232 to TCP/IP. 65
Figure 30. CloudShield Sentinel monitors Piccolo Command Center interface for integrity violations. 66
Figure 31. Architecture for camera system. ... 73

Report No. SERC-2014-TR-036-3 6

Figure 32. Block diagram of a FPGA configured to provide detection and recovery with TMR. 84
Figure 33. TMR Detects and Masks Deviated Operation. .. 85
Figure 34. Architectural block diagram illustrating how the UAV SHIELD Sentinel will be integrated into
the GTRI’s GAUSS platform. .. 92
Figure 35. Proposed UAV SHIELD architectural block diagram. .. 95
Figure 36. NetFPGA-7 architectural block diagram. ... 96
Figure 37. UAV SHIELD block diagram for the the FPGA with supporting cryptographic HW. 98
Figure 38. OODA Real-time controller that implements the OODA loop on the SHIELD Coprocessor. 98
Figure 39. Block diagram of the NetFPGA-7 mediators. ... 99
Figure 40. Block Diagram of the UAV SHIELD board. .. 101
Figure 41. COA Boundaries for Early Co., GA. .. 105

Report No. SERC-2014-TR-036-3 7

List of Tables

Table 1. Behavioral indicator variables names, possible values, and meanings for leaf node assessment.
 .. 30
Table 2. Behavioral Indicator Variables Assessment table. .. 30
Table 3. Behavioral indicator variables names, possible values, and meanings for adversary capability
assessment. ... 31
Table 4. Adversary Profiles Showing Assessed Behavioral Indicator Levels. .. 32
Table 5 Applicable design patterns for each attack type. ... 35
Table 6. Implementation Cost, Lifecycle Costs, and Collateral System Impacts associated with each
applicable design pattern. .. 37
Table 7 Impact to Adversary Relative to Impact to Defense for Parameter Assurance and Data
Consistency Checking .. 39
Table 8. Impact of design patterns on the system. ... 48
Table 9. Effects of System-Aware defense on the system and attacker for the gimbal GPS metadata
attack. ... 49
Table 10. Frame of Discernment for Navigation Architecture. ... 69
Table 11. FOD with Altimeter and Location Estimator. .. 70
Table 12. Navigation procedures. ... 71
Table 13. Procedures for five navigation components. .. 72
Table 14. FOD for camera system. .. 74
Table 15. Procedures for camera system.. 75
Table 16 – Differences between Kc705 and NetFPGA development environments 86
Table 17. Proposed schedule for Phase 2. .. 112

Report No. SERC-2014-TR-036-3 8

1 Project Status Overview

The Systems Engineering Research Center (SERC) has been engaged with the Department of Defense
(DoD) in developing a novel cyber security concept for embedding security solutions into systems; this
new concept is referred to as System-Aware Cyber Security. These solutions provide greater assurance
to the most critical system functions by providing an additional layer of defense that complements
perimeter and network security solutions that serve to guard the entire system from penetration.
System-Aware solutions are particularly effective at guarding against insider and supply chain attacks
that circumvent perimeter security solutions. The broad objective of the System-Aware program can be
thought of as reversing cyber security asymmetry from favoring our adversaries, to favoring the US; i.e.,
from favoring a small investment in straightforward cyber exploits to favoring small investments in
System-Aware cyber security solutions for protecting critical system functions.

To-date, the SERC and a University of Virginia (UVa) led team, consisting of the UVa and the Georgia
Tech Research Institute (GTRI), have advanced the System-Aware cyber security concept and evaluated
a number of specific design patterns that are intended to be reusable across a variety of applications.
These patterns include, but are not limited to, employing diverse redundant components in critical
subsystems, using voting techniques across diverse redundant components for real-time discovery and
elimination of infected components, dynamically modifying the configuration of software components
in systems through virtual configuration hopping techniques, dynamically modifying the configuration of
the hardware/software components in systems through physical configuration hopping techniques,
using system specific data consistency-checking to determine if critical system information has been
manipulated, and where applicable, use of analog components as trusted elements to perform critical
security functions in systems. Furthermore, a decision support framework has been developed for use
by systems engineering teams in selecting a subset of available design patterns for integration into a
cyber-security system architecture.

In addition, a Phase 0 effort consisting of an evaluation of possible applications of existing RT-28-
developed design patterns to a specific application has been completed. The results of this effort
identified an unmanned air vehicle (UAV) system configured for conducting surveillance missions as
suitable for a follow on Phase 1 prototyping pilot effort for validating the System-Aware cyber security
concept. The application to UAV-based systems was inspired by the wide variety of subsystems that are
used in UAV configurations, the range of potential cyber-attacks that can seriously impact the critical
missions of these systems, and the significant power, space and performance constraints that System-
Aware designs must address in order to operate in UAV-based configurations.

This document outlines the results of the Phase 1 effort to apply System-Aware cyber security solutions
to an UAV system:

1. Creation of both a simulated and an emulated environment to enable the testing of System-
Aware cyber security solutions.

2. Identification, selection, and design of potential cyber-attacks that could be utilized to
compromise the UAV’s ability to carry out its mission.

3. Design of a prototype smart security Sentinel to host System-Aware cyber security solutions to
protect against the cyber-attacks identified in (2).

Report No. SERC-2014-TR-036-3 9

4. Design for a Sentinel configured to meet the size, weight, power and functional requirements
necessary for airborne use.

This document also outlines the proposed work for a follow-on Phase 2 project that would consist of
activities necessary to integrate the results of the Phase 0 and 1 efforts into the GTRI Aerial Unmanned
Sensor System (GAUSS) aircraft in order to create a flight-ready demonstration.

2 Project Emulation and Simulation Environments

The platform selected for demonstrating methodologies to protect unmanned autonomous systems
(UASs) from cyber-attacks is the GTRI GAUSS aircraft. This UAV uses the Piccolo II unmanned aerial
avionics system (hereafter referred to as Piccolo or Piccolo II) and a TASE 150 camera gimbal system,
both supplied by Cloud Cap Technology™, a United Technology Corporation™ company. Prior to flight-
testing any new technology with this aircraft, extensive testing is conducted using ground-based
simulators and emulators to ensure flight safety. The Piccolo II autopilot system supports both a
software-in-the loop (SiL) simulation capability and a hardware-in-the-loop (HiL) emulation capability.
Both the UVa and the GTRI have versions of the SiL and HiL environments for supporting on-site
development and testing at their respective locations. The GTRI emulator also includes the capability to
integrate the TASE camera gimbal into HiL emulation environment. The following subsections describe
the SiL and HiL development and test environment at each location.

2.1 UVa Piccolo II HiL Emulation Environment

The UVa utilizes the out-of-the-box simulation and emulation capabilities provided by Cloud Cap
Technology with their Piccolo II autopilot. The HiL emulation environment uses a simulator to represent
the state of the aircraft (e.g., the power levels, aileron settings, and fuel), as well as to generate GPS
data to simulate the aircraft flying over any location. The actual control of the aircraft is done by using
the Piccolo II, operator interface for piloting the Piccolo II, and the supporting ground transmitters and
receivers. As seen in Figure 1, the operator interface, Piccolo Command Center (PCC), connects directly
to a ground station. This ground station is used to send and receive commands and status information
from the Piccolo II. For the HiL emulation environment, the Piccolo II is connected to a PC that hosts a
simulator of the aircraft as well as of the GPS satellites. This computer can be the same one that is
hosting the PCC or a separate computer, as depicted in Figure 1.

Report No. SERC-2014-TR-036-3 10

Figure 1. Basic HiL configuration for the Piccolo II.

In both the UVa and the GTRI HiL emulation environments, the waypoints for the flight path are sent
from the operator’s interface (PCC) to the Piccolo II via a radio link between the ground station and the
Piccolo II; this is the same link that is used in an actual flight. A six degree of freedom (6 DoF) flight
dynamics model of the aircraft running on the aircraft simulator computer provides the aircraft’s state
to the Piccolo II via a CAN bus (controller area network). The Piccolo II calculates the aircraft’s actuator
commands and sends them to the 6 DoF simulation via the same CAN bus. In the GTRI HiL, the aircraft’s
pose (position and attitude) are also sent to the gimbal via the CAN bus to simulate the output of its
own integrated GPS and inertial measurement unit.

The UVa team has leveraged this emulation capability as it has designed the system attacks, the Sentinel
monitoring and detections capabilities, and any restorative actions using this environment. The details
of how the HiL emulation environment was augmented to include the Sentinel’s monitoring, detection,
and restoration techniques is described in Section 3.1.

2.2 GTRI HiL Emulation Environment

The GTRI team utilized a Piccolo HiL emulation/simulation environment that is identical to the UVa
environment with the addition of the TASE 200 gimbal system from Cloud Cap Technology and its
associated hardware and software. As seen in Figure 2, the GTRI’s HiL emulator consists of a Piccolo II
autopilot, TASE 200 gimbal, Cloud Cap video processing system (VPS), and ground station. The TASE 200
is similar to the TASE 150 installed on GTRI’s aircraft, but includes an IR camera.

Report No. SERC-2014-TR-036-3 11

Figure 2. The GTRI HiL emulation environment.

Figure 3 shows the data communications between the various avionics systems for the HiL environment
shown in Figure 2. The aircraft pose data is used by the gimbal system to automatically steer the gimbal
when it is locked on a point of interest (POI). The gimbal outputs metadata to the VPS which overlays
gimbal status information on the video via a serial line using the RS-232 standard; e.g., the current pan,
tilt, and zoom of the camera. The camera also sends NTSC analog video to the VPS which performs
image stabilization before sending the video to the video display via a radio link. In the HiL emulation
environment, the analog video from the camera is replaced with synthetic video from a scene generator,
MetaVR. MetaVR, depicted in Figure 4, is an additional HiL capability that allows for the visualization of
camera imagery of an aircraft in flight. MetaVR, a virtual reality scene generator, decodes the state
information of the aircraft via a network interface with ViewPoint, the program used to view the video.
The software generates a scene based on the aircraft GPS information and gimbal angles. Any scene
within the Southeast United States or Afghanistan can currently be generated, allowing a variety of
CONOPS to be visualized. The analog video is converted to a digital format (H.264) and displayed at the
video display using the ViewPoint software.

Figure 3 also shows the location of data monitoring points on the serial connections that may be used to
detect the injection of a cyber-attack. To conduct this monitoring GTRI developed a snooping device
based on the Raspberry Pi single compute board (SBC) (see section 3.3.1.2). These snoopers can
intercept the serial data, decode the information, and retransmit the data. The Raspberry Pi contains
two serial ports that allow receiving, altering, and retransmitting of serial data. These monitor points will
provide sites where the attack can be injected during the actual flight tests.

Report No. SERC-2014-TR-036-3 12

Figure 3. Data flow diagram for the GTRI HiL emulation environment.

Figure 4. ViewPoint user interface for streaming video created by the MetaVR scene generator

Report No. SERC-2014-TR-036-3 13

In preparation for an eventual flight test GTRI improved the 6DOF modeling parameters to better
represent the GAUSS UAV. This activity included building a higher fidelity inertial model by
disassembling the major components of the air vehicle and weighing them. The component weight data
was then input to the inertial model spreadsheet provided by Cloud Cap to calculate the aircraft’s mass
properties (e.g. location and moments of inertia). To improve the aerodynamic modeling the
aerodynamic and flight dynamic analysis code AVL from MIT was used to generate the linearized
aerodynamic model parameters for the nominal flight state. AVL employs an extended vortex lattice
model for the lifting surfaces, together with a slender-body model for fuselages and nacelles. The CAD
model of the GAUSS airframe provided by Griffon Aerospace (the manufacturer of the GAUSS airframe)
was used for the AVL analysis. The aerodynamic parameters from AVL were input to the Piccolo 6 DOF
simulation and the aircraft’s dynamic responses to manual control inputs were evaluated by pilots
familiar with the handling qualities of the GAUSS aircraft. Several of the lateral and directional stability
derivatives were adjusted to make the simulation model match the behavior observed during previous
flight tests. To improve the performance modeling, the engine look-up table was updated with results
from dynamometer testing of the DA-150 engine used on GAUSS. In addition, the propeller
performance model was updated based on performance calculations for the Xoar 28x14 propeller. The
propeller performance data was provided by an earlier blade element analysis using the Comprehensive
Analytical Model of Rotorcraft Aerodynamics and Dynamics from Johnson Aerospace (CAMRAD/JA).
Additional improvements to the simulation model include rebuilding the .xml model file, developing a
visualization model of the GAUSS, and updating the simulator autopilot software to v2.2.1.c.

3 Review of Phase I Activities

3.1 Relational System-Aware Cyber Assessment Methodology

The relational System-Aware cyber assessment methodology is a process that has been developed as
part of this project to identify the critical system components for a particular system, identify the
possible attack paths to attack those components, determine which of those attack paths would be
most desirable an adversary, identify possible cyber security defenses against those attacks as well as
evaluate the impacts of those defenses on the attacker, assess the effects on system performance of
potential defenses , and to estimate the security trade-offs of the various architectural solutions. The
relational System-Aware assessment methodology is composed of six steps; each step having a well-
defined goal, required deliverables, and responsible team(s) for that stage.

This section outlines the relation System-Aware methodology at a high level in order to capture the
general flow from one step to another. For more detailed information, refer to Barbara Luckett’s 2013
thesis.

3.1.1 Definitions

The relational System-Aware cyber assessment methodology described here was designed to be an
iterative process that relies on inputs from a range of stakeholder communities. In order to ensure that
the information being used is as accurate and certain as possible, it was imperative to ask individuals

Report No. SERC-2014-TR-036-3 14

questions that were appropriate to their backgrounds and areas of expertise. This was accomplished by
initially dividing the stakeholders into three distinct groups:

Red Team - The red team is made up of individuals with knowledge of cyber-attacks and potential threat
agent classes. Their work is focused on developing candidate attack vectors and assessing the
effectiveness of the proposed design patterns.

Blue Team - The blue team consists of designers and users of the system being protected. Their
responsibilities include identifying and prioritizing the critical system functions to protect, as well as
determining which design patterns can be implemented on which system functions.

Green Team - The green team, which is comprised of experts in system cost analysis and adversary
capability, will analyze costs, to both the attacker and defender, for candidate architectural solutions.

3.1.2 Methodology Process Steps

Step 1: Define the Variables and Relationships within the System to be Protected

The initial step of the relational methodology is focused on framing the problem to ensure that all
participants in the process are on the same page regarding the system to be protected. The process
begins by identifying the critical functions of the system and defining the variables and influence
relationships within that portion. Step one is to be performed by the blue team and is intended to
outline the expected functionality of the system with minimal defensive strategies implemented. At this
point, a system influence relational diagram is constructed using directed acyclic graph (DAG) notation.
This diagram is created for the system without the consideration of a cyber-attack to ensure that
everyone involved in the process is in agreement on the most basic structure and components before
the additional complication of an adversary.

Step 2: Identify the Possible Paths an Attacker Could Take to Exploit the System

Step two introduces one of the issues that make this specific problem unique: an intelligent adversary.
While the system influence relational diagram represents a system where success may be compromised
by random failures, the cyber security architecture selection problem introduces concerns where the
decisions made by an active player in the system can also compromise mission success. In step two, the
red team is tasked with constructing an attack tree for the system functions identified in step one. By
looking at the system from the perspective of an adversary, attack trees can be utilized to understand
the possible paths an attacker could take to exploit a specific feature of the system.

Step 3: Determine the Subset of Attack Actions Most Desirable to an Attacker

Considerable analysis can be conducted after the construction of an attack tree. However, rather than
focusing on quantitatively calculating the probability of success for a specific attack path , as is typically
done in attack tree analysis, the analysis included in this framework considers a more qualitative,
abstract metric space. In step three, the green team develops a set of variables that can be used to
assess the difficulty of a particular attack path. These variables are called behavioral indicators and can
include, but are certainly not limited to, resources such as technical ability, time, manpower, money,

Report No. SERC-2014-TR-036-3 15

equipment, facilities, presence of an insider, and access to system design information. These variables
are used to make two separate types of judgments: leaf node assessments and adversary profile
construction.

Step 4: Identify Appropriate Defensive Actions and Their Impacts on the Attacker

After the red and green teams have identified the actions that an adversary would need to take to
successfully execute an attack and the subset of those that are most attractive to a particular adversary,
the blue team can then determine which of their existing defensive actions may be appropriate. The
relational methodology relies on the assumption that a portfolio of design patterns has already been
developed—either by previous blue teams or by an external group no longer involved in the process. If
the current blue team was not responsible for developing the set of design patterns, it is assumed that
they have access to the portfolio and the have the necessary knowledge regarding the meaning of each
design pattern.

The goal of step four is to select design patterns from the existing portfolio that could be implemented
to make the actions captured in the leaf nodes of the attack tree less desirable to the attacker. This can
mean increasing the difficulty, cost, or probability of detection to the adversary or lessoning the
consequences felt by the defense in the case of a successful attack.

Step 5: Evaluate the Impacts of the Selected Potential Actions on the Defense

While step four captures the design patterns’ impacts on the adversary, step five transitions to
evaluating how those same choices impact on the performance of the system to be. The green team is
able to apply their second class of intelligence information here: cost analysis estimates for the
defensive solution choices. At this point, each of the design patterns selected in step four is evaluated in
regards to implementation cost, lifecycle cost, and collateral system impacts. The green team is
responsible for estimating the monetary cost of a solution, but the blue team also adds input on a
solution’s collateral system impact here. The evaluation of the solution’s collateral impacts is performed
by the blue team since they have knowledge regarding the system, how it will be used, and what
impacts are unacceptable. Any solutions that are deemed to be beyond the allocated budget for System-
Aware security or introduce unacceptable impacts on system performance can be eliminated from
further analysis at this point.

There is one deliverable for this step: a reduced list of possible defensive choices, filtered from the
original existing design pattern portfolio, to only those that increase the difficulty for the considered
attacker while still remaining at an acceptable impact to the defense.

 Step 6: Weigh the Security Trade-offs to Determine Which Architectural Solutions Best Reverse the

Asymmetry of a Potential Attack

The goal of the sixth and final step is for all three teams to participate in a collaborative discussion
regarding the security trade-offs that exist with the potential choices determined in step five. While
each defensive strategy remaining after step five provides some potential security benefit, has an

Report No. SERC-2014-TR-036-3 16

acceptable impact on the system being protected, and fits within the allocated budget the exact mixture
of security to defense to budget varies by solution.

3.1.3 Vulnerability and Threat Analysis Process

When trying to protect a UAV or UAS from a cyber-based attack, important questions arise when
identifying priorities for potential threats, purposes, consequences and level of effort to achieve them:
Which UAV systems and functions, if compromised, can lead to significant disruption? What UAV
components or system configurations are inherently vulnerable to classes of cyber-attack? Where can
these threats originate?

One approach to answering these questions is to begin with a cyber-attack classification schema that
allows one to reason about vulnerabilities and impacts in a structured way. While most schemas in other
domains are one or two dimensional in nature, cyber-attacks on cyber physical systems such as UAV
systems are usually multi-dimensional owing to the fact that the exploits, deployment, and effects of the
attacks usually involve a multi-vector approach that can occur anywhere along the lifecycle of the UAV.
Our research for this phase aimed to develop a structured methodology to identify potential
vulnerabilities, reason about the attack surfaces that exploits may use, and rank the impacts of potential
cyber-attacks to allow more systematic development of cyber defenses.

An architectural selection framework for System-Aware cyber enhancement was developed and applied
to the autopilot system in Phase 1. We provide an overview of activities for cyber threat analysis efforts
in this section which supports the overall cyber enhancement architectural selection process:

1. Define the system functions and relationships between those functions within the system.
2. Identify the critical system functions and subsystems.
3. Identify of potential cyber-attacks.
4. Determine the subset of attack actions most desirable to an attacker.

3.1.3.1 System Functions and their Interrelations

The purpose here is to develop an influence graph between major systems such that functional
dependencies between systems can be reasoned about.

By studying the general architecture of the autopilot in Figure 5, we can see a natural grouping of
relationships for the autopilot into four categories:

 The Controller: The onboard processor executes all of the control laws, flight director functions,
management of INS (inertial navigation system), GPS, actuators, and the communication links.
The controller is composed of those functions represented by the red circle in Figure 5. The
flight controller requires inputs from the sensory subsystem state estimator (e.g. INS, GPS,
altitude, and speed) to regulate the aircraft to a desired state, speed, position and attitude. The
controller also takes input from the flight director which contains the desired trajectory
reference states for the aircraft. The flight controller uses the information stored in the flight
director as tracking inputs; thus the flight controller is progressively issuing actuation commands
to the control surfaces to minimize the error between track references and current aircraft state

Report No. SERC-2014-TR-036-3 17

and position. As such, the autopilot continuously flies the aircraft to each geographical waypoint
in succession. Attacks directed to the hardware and software of the flight controller can affect
the behavior of the flight controller so that it does not perform its function as intended.

 Sensory and Measurement Subsystem: The sensory subsystem (shown as the blue circle in
Figure 5) provides all of the sensed vehicle state information needed by the controller to
maintain stable flight. The functions in this system include the INS which provides vehicle 3-axis
accelerations, angles, and velocities; GPS which provides geo-reference position and velocities;
magnetometer which is used to sense heading direction. Thus the total vehicle state is (φ, θ, ψ
ve, vn, vd, ax, ay, az, and heading)). The total sensor readings combined with the GPS information
are sensed by the controller on regular time intervals (every 100ms). Examples of attacks against
the sensory subsystem include false data injection attacks to manipulate sensory data,
vehicle/system component state data manipulation, and navigational waypoint data
manipulation.

 The Communication System: The communication system is responsible for (1) transmitting
commands to the UAV to alter its flight path and (2) to receive telemetry information about the
UAV in flight (the communication system is identified by those components in the green circle in
Figure 5). The command signals to control the aircraft are transmitted by the operator via a
line of sight communication transceiver. The ground station communication link operating
frequency is usually in one of several designated bands (900 MHz or 2.4 GHz are common).
Various signal modulation methods are used to encode the link channels. Various channels are
allocated for each command or telemetry class; i.e., pitch, roll, yaw, and throttle will be on a
separate channel than GPS. After the onboard receiver decodes the signals from the ground
station transmitter, the signals are converted to digital commands, processed by the onboard
main processor. Attacks that target the communication system could affect both the aircraft and
the command/control station. Telemetry data can be spoofed from the UAV, command
information can be intercepted an altered, disabling of the communication link, etc.

 Gimbal Pointing Camera system: UAVs are predominantly used as Intelligence, Surveillance, and
Reconnaissance (ISR) platforms carrying sensor payloads such as EO/IR cameras, synthetic
aperture radar, signals intelligence systems, and others. The purple circle shown in Figure 5
encapsulates the onboard gimbal mounted camera of the UAV. The gimbal is capable of target
tracking, scene steering and electronic image stabilization. The gimbal system features an
onboard processor to control the stabilization effectors, a VPS, and a communication link to
send images to ground station and to the ViewPoint operator station. The ViewPoint operator
station is capable of integrating with a moving-map, real-time mosaicing, target tracking, and
video recording functions.

Report No. SERC-2014-TR-036-3 18

Figure 5. UAV Onboard Systems showing the four major system groups.

To understand the relationships between the major subsystems, we utilize an influence diagram which is
a type of DAG. DAGs provide value in situations where a system is characterized by a large number of
inter-dependent functions/variables that have highly coupled process coordination. Understanding the
possible attack scenarios is dependent on understanding the interrelationships among these coupled
functions. For this reason, they work well for considering a system of this scale and have been used for a
variety of applications in the safety and reliability fields.

As shown in Figure 6, a DAG includes a set of nodes and a set of edges connecting the nodes. In the
system influence diagram shown in Figure 6, nodes represent a functional resource within the system.
These can be hardware or software components, interfaces, or external factors, all of which have system
functionality and can influence the outcome of the system service or behavior. The edges connecting
the nodes represent the influence relations between the nodes. If two nodes are connected that means
one node is influenced by the other node in order to provide expected service to UAV system. The arrow
on the edge connection signifies a provides relation. The accepting node signifies a requires relation

from the edge. Similarly, if two nodes are not connected, the functionality of one node does not have
an influence on the other. While a DAG alone overlooks a critical aspect of the problem at hand (the
presence of an adversary), its construction enables the team to reach a common understanding of the
system.

Communications

GPS

 LoS
Communication

INS
and heading

Airspeed

Sensor
measurements

Pos, vel, rates, rot,
attack, etc..

Flight Controller
Track and Stabilize

Flight mode
Controller

Gains

Control to
Actuator
mapping

Aircraft Control
Surfaces

Auto-pilot
Flight Path Director

Mission plan
Waypoints

UAV Command
Center

Ground Station

Network

LO
S

Com
m

Operator

Onboard UAV
Auto Pilot

State estimation
of current state

Trajectory
References

φ, θ, ψ ve, vn, vd,

ax, ay, az, heading,

GPS

Remote Control Mode

Autonomous mode

Main Onboard
Processor

Gimbal
Camera

Gimbal
Controller
Processor GPS

Stabilizing
Platform

Video
Processing

System

Radio
Downlink

Gimbal Camera
Pointing System

Image and Meta data

Report No. SERC-2014-TR-036-3 19

Figure 6. Influence diagram for used to understand the relationship between the UAV subsystems used
for navigation.

Figure 6 shows that the output of the Aircraft Navigation (i.e., the success or failure of the aircraft
navigation function) is dependent on three major factors: (1) the actions of the human operator, (2) the
functionality of the autopilot hardware/software, and (3) the weather conditions where the platform is
currently operating. In turn, the autopilot function is dependent (i.e., influenced) by a number of its
upstream nodes. These include state estimates from the sensor subsystems, pre-flight configurations,
stored waypoints, communication links, INS, GPS, etc. All of these upstream nodes, if compromised by a
cyber-attack, may alter the navigation of the UAV. For instance, if the GPS receiver is compromised in
such a way that the latitude and longitude coordinates are offset then the navigation tracker will think
the UAV is in a location where it is not and attempt to move the UAV to the desired waypoint. That is
this type of cyber-attack would cause the UAV to divert from its planned path.

Similarly, the diagram shows that the status of the operator display is influenced by static information;
e.g., maps that are stored in the software and variable information of the state estimates which are
collected on-board the platform. In turn, the information shown on the display influences the actions of
the human operator.

Figure 7 shows the influence diagram for the gimbal camera pointing system. The subsystems of interest
in this diagram are the camera control processor, GPS, and the sensors and effectors. The camera
control processor executes software (SW) to implement functions such as, pan-zoom-tilt (PZT), auto-
tracking, point-of-interest tracking, etc. The GPS receiver provides the necessary geo-reference data to
the control processor and camera to locate and track objects of interest. The sensor and effector group

Report No. SERC-2014-TR-036-3 20

provides motion-stabilization to the mounted camera during flight. These three factors provide the
greatest influence to the success or failure to the surveillance mission.

Figure 7. Influence diagram used to understand the relationship between the UAV subsystems used for
gathering surveillance data.

With a firm understanding of the UAV system functions and how their interrelationships can influence or
affect the UAV navigation, we can now transition toward identifying critical systems onboard the
aircraft.

From Figure 6 and Figure 7, three major subsystems have been identified for further analysis:

 Autopilot subsystem.
 GPS subsystem.
 Gimbal camera pointing systems.

Each of these will be discussed in section 3.2.

3.1.3.2 Identifying and Classifying Potential Cyber Attacks

To support this effort we developed a cyber-taxonomy to assist the red team and blue team members to
think broadly about the origins, effects, and extent of potential cyber-attacks on the UAV. A taxonomy
or classification schema allows practitioners to have a common basis of understanding. It also allows
one to systematically reason about cyber-attack characterization as classes. In doing so the analysis of

Report No. SERC-2014-TR-036-3 21

cyber-attacks is more organized and easier to transfer to other cyber defense engineering practices. Our
taxonomy was developed to support the following analysis inquiries required of the System-Aware cyber
security framework:

 What are the different ways of perpetrating an attack against UAV systems?
 What kind of damage or consequence can these attacks cause?
 What are the challenges in preventing such attacks?
 What are vulnerabilities that allow the attack to manifest?
 What are potential propagation channels of the cyber-attack?

Figure 8 shows the taxonomy model. Each node at level 2 of the tree (the tree in Figure 8 contains 9
levels) can be thought of as a dimension in an ordinal structure. That is, each dimension has a specific
place in the order of the taxonomy. The dimensions of the model include the objectives of the attack,

propagation means, origin of attack, actions of the attack, vulnerabilities exploited, and target resource,

effects and consequences. Here the order is organized around the following chain of inference:

An attack OBJECTIVE by means of PROPAGATION from a lifecycle ORIGIN using malicious
ACTIONS exploiting a VULNERABILTY on a RESOURCE/TARGET can change system EFFECTS that
have system CONSEQUENCES

Below each dimension are sub-dimensions or categories that characterize the parent class dimension
with respect to the domain of applicability. This classification schema recognizes that these sub-
dimensions or categories can be modified to fit other domains; e.g., a cyber-attack on a power grid may
have different sub-dimensions than a UAV (i.e., the target dimension for the power grid would be
substations and control centers). In addition, new types of attacks that may require new sub-dimensions
can be added to the schema without altering the basic dimensions.

Report No. SERC-2014-TR-036-3 22

Figure 8. Cyber-taxonomy.

3.1.3.3 Selection of Cyber Attacks to move forward

Based in part on the cyber-attack profiling detailed in Barbara Luckett’s 2013 thesis, and the
categorization of cyber-attacks by the taxonomy method described above, we selected several classes of
cyber-attacks for more detailed analysis and to carry forward to the System-Aware cyber test bed phase:

 Parameter-Based System Attack
 GPS System Attacks
 Gimbal System Attacks
 Hardware Security Against Manufacturing and Design Attack

The selection of these attacks is based in part on (1) how each cyber-attack is uniquely different and
thus stresses the System-Aware cyber security methodology, and (2) how the application of each cyber-
attack may result in different effects on the overall UAV system operations. Before we discuss the
specific cyber-attack profiles, we first introduce the concept of an attack surface. While the taxonomy
described above is beneficial in postulating about the classes of cyber-attacks, it is not intended to
describe in detail the specific mechanisms or vectors that an attack uses to penetrate the system. In
order for our emulated cyber-attacks to reflect actual cyber-attacks, we need to ensure that realistic
attack surfaces exist for the emulated cyber-attacks in the UAV.

Report No. SERC-2014-TR-036-3 23

3.1.3.4 Understanding Attack Surfaces

The attack surface of a software environment is the sum of the different points (the attack vectors)
where an unauthorized user (the attacker) can try to enter or extract data from an environment. The
model in Figure 9 illustrates the concepts of attack surfaces on several important points. First, successful
cyber-attacks usually require several attack surfaces to be breached for success. The second notion is
reachability. Reachability describes the depth or breadth of the influence effects of the attack. In this
case, the red arrow indicates an attack that deeply penetrates all layers to achieve its objective. The
third notion is entry and exit points. Entry points define the places where data is inputted into the
system; thus providing a means for ingress into the system by cyber-exploit. Entry points are associated
with channels. Channels are means for moving or observing information into a system either directly or
indirectly. A channel could be a network port, an unused debug port, or a wireless snooper. The exit
points define where data or control information can be acquired from a system. Finally, resources that a
device uses to input, move, process, and output data are part of the attack surface. Resources have
entry and exit points, processing channels, and storage.

Figure 9. Attack Surface Concept Model.

3.2 Attack Development

3.2.1 Parameter-Based System Attack

UAV autopilot systems are designed to be reusable across a diverse set of aircraft configurations and
support a variety of mission scenarios. As a result, many of the variables that govern the control
algorithms for a given flight are parameterized:

 Maximum and current fuel capacity.

 Maximum allowable pitch, yaw, and turning radius.

Report No. SERC-2014-TR-036-3 24

 Maximum altitude the aircraft can safely operate.

 Flight plan for a given mission.

However, while these parameters allow a given autopilot to fulfill a large number of missions, they also
provide a potential attack vector that a malicious adversary could use to damage an UAV or compromise
its ability to carry out its mission objectives. For example, as discussed in section 3.2.3, UAVs are
primarily used as platforms for providing ISR. An adversary could use a parameter-based attack to
neutralize a UAVs ability to carry out its surveillance operation through the usage of an embedded
Trojan horse that would be capable of disrupting the UAV’s ability to gather surveillance in key regions;
i.e., the Trojan horse would alter the UAV's flight plan when the UAV entered certain geographic
regions.

This section will outline one potential parameter-based attack vector against a UAV autopilot. This
attack will be in the form of a Trojan horse designed to modify the UAV's flight plan stored in the
autopilot system. The adversary will leverage the fact that the flight plan is stored in the autopilot
system as a series of waypoints (i.e., destinations) that the aircraft will fly between. When the aircraft
enters a key geographic region, an embedded Trojan horse will automatically divert the aircraft to
another waypoint in the flight plan.

3.2.1.1 Applying the Relational System-Aware Assessment Methodology to the Parameter-Based

Attack Scenario

Step 1

As outlined in section 3.1, the methodology begins by determining which system functions are critical
and outlining the variables and their influence relationships. At the highest level, the success of the UAV
mission is dependent on the success of three separate functions: (1) the system navigating to the correct
location, (2) the sensors on-board working to collect the correct surveillance data, and (3) the platform
remaining safe and operational throughout the mission. Of those three functions, the aircraft navigation
was selected as critical. This decision was made in part because this was the area the UVa team had
been focused on for the majority of the project. Using this to provide the initial scoping for the
methodology, a system influence relational diagram was constructed for the aircraft navigation function
using the DAG notation. This influence diagram is shown in Figure 10.

Report No. SERC-2014-TR-036-3 25

Figure 10. System influence relational diagram for the UAV (aircraft) navigation system.

This graph shows that the outcome of the system function (i.e., the success or failure of the aircraft
navigation function) is dependent on three factors: (1) the actions of the human operator, (2) the
functionality of the autopilot software, and (3) the weather in the region where the platform will be
operating. Similarly, the diagram shows that the status of the operator display is influenced by static
information such as maps that are stored in the software and variable information of the state estimates
that are collected onboard the platform. In turn, the information shown on the display influences the
actions of the human operator.

Step 2

The second step of the relational methodology is focused on the introduction of an intelligent adversary.
This perspective is captured by the construction of an attack tree. Based on discussions with the project
participants, it was determined that a single attack tree would not necessarily represent the whole
picture of how an adversary may wish to exploit a particular system function. Specifically, the
adversary’s desire and motivation for attempting the attack has a large influence on the manner in
which the attack is executed. For instance, for a UAV navigation system attack, two different attack
paths may exist that could achieve the same outcome (e.g., change the waypoints onboard the
platforms), but one of those paths may have a higher likelihood of being detected while the other has a
higher likelihood of success. Thus, an attacker more concerned with remaining undetected may choose
the attack path that is harder to detect but offers greater assurances the adversary will not be caught.
By dividing the attack structure into multiple trees the team is able to incorporate the adversary’s
preferences and motivation as well as consider the value vs. detectability trade-off that is often present
in the cyber-attack field.

Report No. SERC-2014-TR-036-3 26

For the UAV navigation system attack example, the red team constructed three trees for three different
attack types; each attack type potentially possessing a different value to a possible attacker:

1. A minor trajectory change where the adversary makes a minor change to the waypoints in order
to cause the platform to deviate slightly from the flight path. The intent of this attack is to
prevent the UAV from operating in designated regions. This attack assumes that the deviation’s
magnitude and duration are small enough to go unnoticed by the aircraft operator.

2. A major trajectory change where the adversary drastically alters the flight trajectory in order to
cause the platform to lose control and crash into the ground. This attack assumes that the flight
trajectory alterations occur too quickly for the pilot to prevent the aircraft from losing control
and crashing.

3. A concealed major trajectory change where the adversary drastically alters the flight trajectory
in order to reroute the UAV to an alternate destination. This attack assumes that the trajectory
change on its own will be noticed and can be prevented by an operator taking appropriate
action(s). As a result, this attack assumes that the adversary will take action to conceal the
major trajectory change in order to prevent the operator from taking any actions that might
thwart the attack.

The Concealed Major Trajectory Change (option 3) tree was selected for the analysis moving forward for
two reasons. First of all, structurally, all three trees are similar in regards to how the exploit is realized.
This results in the Concealed Major Trajectory Change tree including the nodes of the other two as well
as the nodes representing actions to lower the detectability of the attack. Second, the value gained from
the Concealed Major Trajectory Change attack was most in line with the expected preferences of the
adversary profiles the project team was most concerned with.

Figure 11 shows the top level overview of the Concealed Major Trajectory Deviation (i.e., the Concealed
Major Trajectory Change) attack tree constructed in step two. Due to size constraints, the lower
portions of the subtrees have been rolled up in Figure 11. There are two example subtrees displayed
here; the Alter Waypoints attack and the Conceal Flight Trajectory attack. Similar trees were used to
evaluate the other attacks considered; i.e., the Alter Navigation Sensor Information attack, the Alter

Autopilot attack, and the Alter Actuator Controls attack.

Report No. SERC-2014-TR-036-3 27

Figure 11. Top-Level overview of Concealed Major Trajectory Deviation attack.

Figure 12. Subtree for Alter Waypoints attack.

Report No. SERC-2014-TR-036-3 28

Figure 13. Subtree for Conceal Flight Trajectory attack.

As seen by the size of the attack trees represented in the figures above, the attack on the UAV
navigation system exist on a large scale. There are a total of 55 leaf nodes in the Concealed Major
Trajectory Deviation attack tree alone, which can be executed in various combinations to create a total
of 817 possible attack scenarios. Additionally, many of the leaf nodes could be broken down even
further in to more specific sub-trees detailing their execution. However, the scope of this tree is more
than adequate for the purpose of the relational methodology. It is also impossible to protect against
every conceivable attack; thus, we must identify those attack vectors that an adversary could perceive
as both relatively simple exploit and of high value.

A couple of trends became apparent during the construction of the Concealed Major Trajectory
Deviation attack tree. First, almost every attack strategy included requires two distinct actions: (1) an
action to implement the ability to make the desired change and (2) an action to trigger the change
on/off as needed. To capture this concept, each attack is represented by an AND node with two
subsequent nodes associated to it—one node representing the change action and another represent the
triggering mechanism used to initiate the change action. For instance, if the adversary is able to insert a
compromised chip into the system at some point in the supply chain they must also have some method
to activate the chip; without a triggering mechanism, the infected software is either always on—which
could lead to a higher likelihood of the attack being detected and prevented—or is never turned on—
which makes the attack worthless. A second trend identified from the construction of the attack tree
was the repetition of several different categories of leaf nodes:

1. Embedded: Where infected hardware/software was added to the system at some point in
the production process, typically because of a compromised source in the supply chain.

2. Remote: Where the attack is executed from outside of the system, either through an
existing link to the system or a completely external factor.

Report No. SERC-2014-TR-036-3 29

3. Insider: Where an individual who has access to critical aspects of the system and detailed-
non-public domain knowledge takes action(s) to exploit the system.

4. Miscellaneous: Attack actions that do not fit any of the three previous designations; for
instance, an external decoy (spoofing) or causing a distraction event for the operator.

Step 3

As noted previously, it may be infeasible for the blue team to attempt to protect the system against all
55 attack actions identified in step two. Thus, it is desirable to focus the blue team’s efforts on
protecting against those attacks perceived as high value to an attacker. The task of identifying a subset
of leaf nodes that are perceived as high value to a specific attacker is tasked to the green team. This
filtering process involves assessing both the leaf nodes and a potential adversary profile with regards to
a set of behavioral indicators, so step three begins by determining the set of necessary behavioral
indicator variables to use. Table 1 shows the final set selected for the UAV navigation system attack
example.

Behavioral Indicator

Name

Possible Values Meaning for Leaf Node Assessment

Design Knowledge Low

 Low-Med

 Medium

 Med-High

 High

What level of design knowledge is required to
successfully complete the attack action?

Attack-Specific

Technical Ability

 Low

 Low-Med

 Medium

 Med-High

 High

What level of attack-specific technical ability is
required to successfully complete the attack
action?

Resources Low

 Low-Med

 Medium

 Med-High

 High

What level of resources (i.e.: facilities and
equipment) is required to successfully complete
the attack action?

Insider Presence

(Operational)

 Low

 Low-Med

 Medium

 Med-High

 High

To what extent is having an insider present in
the operational phase of the system
necessary/helpful in completing the attack
action?

Note on possible values:
Low = entirely unnecessary
Medium = helpful but not required
High = impossible without

Insider Presence

(Supply Chain)

 Low

 Low-Med

 Medium

 Med-High

 High

To what extent is having an insider present at
some point in the supply chain
necessary/helpful in completing the attack
action?

Report No. SERC-2014-TR-036-3 30

Note on possible values:
Low = entirely unnecessary
Medium = helpful but not required
High = impossible without

Manpower/Time Low

 Low-Med

 Medium

 Med-High

 High

What level of manpower and time is required

to successfully complete the attack action?

Table 1. Behavioral indicator variables names, possible values, and meanings for leaf node assessment.

To assess these values for the set of leaf nodes, a Behavioral Indicator Variables Assessment table was
created (shown below in Table 2). This table can be reproduced for each of the 55 nodes, and the leaf
node name can be inserted in the first line for easy identification. Members of the green team are then
tasked with completing the tables.

Leaf Node Name

Design

Knowledge

Attack-Specific

Technical Ability

Resources Insider Presence

(Operational)

Insider Presence

(Supply Chain)

Manpower

□ Low

□ Low-Med

□ Medium

□ Med-High

□ High

□ Low

□ Low-Med

□ Medium

□ Med-High

□ High

□ Low

□ Low-

Med

□ Medium

□ Med-

High

□ High

□ Low

□ Low-Med

□ Medium

□ Med-High

□ High

□ Low

□ Low-Med

□ Medium

□ Med-High

□ High

□ Low

□ Low-Med

□ Medium

□ Med-

High

□ High

Table 2. Behavioral Indicator Variables Assessment table.

Several different levels of granularity for the behavioral indicator scales were considered before
deciding on a five point Likert-style scale. Using three (Low, Medium, and High) did not allow enough
variation while seven (Very Low, Low, Low-Med, Medium, Med-High, High, and Very High) was too many
choices and caused the participants to become overwhelmed and revert towards the simplest three
(Low, Medium, and High) in many cases.

In addition to making judgments regarding the resources required for the various leaf nodes, step three
also includes an assessment of the resources a particular threat actor is expected to possess. Using the
same behavioral indicator variables that are used for assessing the nodes (shown again in Table 3 to
reiterate their meaning in assessing an adversary), an adversary profile can be constructed.

Report No. SERC-2014-TR-036-3 31

Behavioral Indicator

Name

Possible Values Meaning for Adversary Assessment

Design Knowledge Low

 Low-Med

 Medium

 Med-High

 High

To what level do you expect the attacker to have

access to design knowledge of the system?

Attack-Specific Technical

Ability

 Low

 Low-Med

 Medium

 Med-High

 High

What level of attack- specific technical ability do

you expect the adversary to possess?

Resources Low

 Low-Med

 Medium

 Med-High

 High

What level of resources (i.e.: facilities and

equipment) do you expect the attacker to have

access to?

Insider Presence

(Operational)

 Low

 Low-Med

 Medium

 Med-High

 High

What is the likelihood that the attacker has an

insider present in the operational phase of the

system?

Insider Presence (Supply

Chain)

 Low

 Low-Med

 Medium

 Med-High

 High

What is the likelihood that the attacker has an

insider present at some point in the supply

chain?

Manpower Low

 Low-Med

 Medium

 Med-High

 High

What level of manpower (i.e., time and number

of people) do you expect the attacker to

possess?

Table 3. Behavioral indicator variables names, possible values, and meanings for adversary capability
assessment.

These profiles are then used to prune the attack tree—a process that eliminates attack scenarios (and
thus, leaf nodes) to create a reduced tree that is specific to an individual threat actor. In future
applications, a single adversary profile would be created for the threat actor that the group was most
concerned with. However, for this example, it was decided that there were four potential classes of
adversaries; each adversary possessing vastly different resources, skills, and motivations. Furthermore,
all four adversary profiles were constructed in order to highlight the differences among them:

1. Rogue Insider: An individual that has a specific insider connection to the UAV system
(i.e., an operator or avionics engineer) and has decided to take action against the

Report No. SERC-2014-TR-036-3 32

system. He/she has specific knowledge about or access to the system, but their
knowledge is more likely to be narrow in scope and they are severely limited in regards
to manpower. The individual may not have a particular purpose in attacking the system.

2. Terrorist Group: A motivated, moderately sized group that is working to compromise
the system for a reason; e.g., preventing the platform from collecting surveillance
information in a specific geographic area to prevent the detection of some activity.

3. Nation State: A country with considerable resources, manpower, and skills that is
attacking the system for a reason.

4. Criminal Cyber Group: A moderately sized mercenary group whose goal is to make a
profit through the use of one or more attack capabilities. For example selling an attack
capability to a terrorist group or nation state to use against the U.S. Criminal cyber
groups typically select a target system to which they possess existing access or
knowledge.

Table 4 shows the assessments made for each threat actor profile in regards to the six behavioral
indicator variables.

 Rogue Insider Terrorist Group Nation-State Criminal Cyber Group

Design Knowledge Med-High Medium Med-High High

Attack-Specific

Technical Ability

Med-High Medium Med-High High

Resources High Medium Med-High Medium

Insider Presence

(Operational)

High Med-High Medium Medium

Insider Presence

(Supply Chain)

Low-Med Medium High Medium

Manpower Low Med-High High Med-High

Table 4. Adversary Profiles Showing Assessed Behavioral Indicator Levels.

Utilizing the evaluations of the adversary behavioral indicators, we were then able to prune the attack
trees to a final list of attack scenarios against the UAV navigation system:

 Embedded Attack to Change Waypoints at Ground
 Remote Attack to Change Waypoints at Ground
 Embedded Trigger to Force Waypoint Update
 Remote Trigger to Force Waypoint Update
 Embedded Attack to Alter INS Measurements
 Embedded Trigger to Cause Alteration of INS Measurements
 Embedded Attack to Change Parameter Data Tables
 Remote Attack to Change Parameter Data Tables
 Embedded Trigger to Cause Parameter Data Tables

Report No. SERC-2014-TR-036-3 33

 Remote Trigger to Cause Parameter Data Table Change
 Embedded Attack to Add Bias to I/O Commands at the Ground Station
 Remote Attack to Add Bias to I/O Commands at the Ground Station
 Embedded Attack to Change HMI Display Software
 Remote Attack to Change HMI Display Software
 Embedded Trigger to Cause Display Software Change
 Remote Trigger to Cause Display Software Change
 Remote Attack to Change Airplane Position Reports
 Embedded Trigger to Cause Airplane Position Report Change
 Remote Trigger to Cause Airplane Position Report Change

Step 4

This reduced set of 19 nodes can be compared with the existing portfolio of design patterns to
determine which design patterns are the most applicable. A design pattern can be considered applicable
for several reasons. It can make a leaf node more difficult, uncertain, or expensive, or make it so the
completing the action requires that the adversary have specialized skills or equipment. Additionally, a
design pattern may be applicable if it increases the likelihood that the attack can be detected and
prevented. Finally, a design pattern may be applied if it decreases the consequences on the defense
team given the attack is still successful.

The 19 remaining leaf nodes can be grouped into six categories: (1) ground station based waypoint
change, (2) change of INS measurements, (3) change of parameter data tables, (4) addition of bias/noise
through the I/O commands at the ground station, (5) spoofing the human machine interface (HMI)
operator display through a software change, and (6) manipulation of the airplane position report. Table
5 shows several possible design patterns that were determined to be applicable for each of the
remaining six attack types.

Attack Type Design Pattern Detailed Description of DP Functionality

1. Ground Station

Based Waypoint

Change

Parameter Assurance Typically, there will be a pre-loaded flight

plan based on the mission. Parameter

Assurance compares the waypoints input at

the ground to the table of values in the

system to check for large, unexpected

deviations.

Data Consistency Checking A change of the waypoints at the ground

station needs to follow a step order of steps.

Data Consistency Checking looks to see where

the change originated from to verify that it

was initiated by the operator.

2. Change of INS

Measurements

Diverse Redundancy Diverse Redundancy involves the

implementation of additional INS devices,

from diverse manufacturers/suppliers.

Physical Configuration Hopping Physical Configuration Hopping involves

Report No. SERC-2014-TR-036-3 34

hopping between multiple INS components at

a pre-determined interval.

Verifiable Voting Voting involves comparing the values

returned by multiple INS devices to identify

and isolate a compromised INS.

3. Change of

Parameter Data

Tables

Data Consistency Checking A change of the parameter data tables needs

to follow a step order of steps. Data

Consistency Checking looks to see where the

change originated from to verify that it came

from a trusted source.

Parameter Assurance Parameter Assurance compares the

parameter data table values to a table of

preexisting “gold standard” of flight control

values in the system to check for large,

unexpected deviations.

4. Addition of

Bias/Noise Through

I/O Commands at

Ground

State Estimation State Estimation uses existing mechanisms in

the system to estimate other state variables

in the system. These values can be used

indirectly to infer what the state in question

should be.

5. Spoofing the HMI

Operator Display

Through Software

Change

Data Consistency Checking A change of the HMI display software needs

to follow a step order of steps. Data

Consistency Checking looks to see where the

change originated from to verify that it came

from a trusted source.

Parameter Assurance Parameter Assurance involves using a back-up

system (possibly considerably more

rudimentary than the main operator display)

to collect the same information as the main

display. These values may not be displayed to

the operator, but the system compares the

main display values to those collected by the

back-up display system to check for

deviations.

State Estimation State Estimation uses existing mechanisms in

the system to estimate other state variables

in the system. These values can be used

indirectly to infer what the operator display

should be showing.

6. Change of Airplane

Position Report

Diverse Redundancy Diverse Redundancy involves the

implementation of additional radio devices,

from diverse manufacturers/suppliers (the

radio is used as an example here because it is

the source that sends the position

information from the platform to the ground

Report No. SERC-2014-TR-036-3 35

station, but diverse redundancy could be

added to another device earlier in the process

to accomplish the same outcome).

Physical Configuration Hopping Physical Configuration Hopping involves

hopping between multiple radio components

at a pre-determined interval (see note

regarding diverse redundancy above: the

radio is only an example for one device where

physical configuration hopping could be

implemented).

State Estimation State Estimation uses existing mechanisms in

the system to estimate other state variables

in the system. These values can be used

indirectly to infer what the state in question

should be. State Estimation would only work

in this situation if the change caused by the

adversary did not affect all of the state

estimates included in the Airline Position

Report (the design pattern relies on having

some secure estimates to use in order to infer

less secure estimates).

Table 5 Applicable design patterns for each attack type.

At this point, these design patterns can be inserted back into the system relational influence diagram
constructed in the first step to understand how the different defensive strategies complicate the actions
required by the adversary and how they interact to provide multidimensional coverage of the system.
Several examples are discussed here to demonstrate the type of insight that can be gained in this step.

The first defensive strategy to consider is the addition of Parameter Assurance implemented on the
waypoints stored at the ground station. This design pattern works by maintaining access to a pre-loaded
flight plan associated with the mission and comparing the waypoints at the ground to these stored
values to check for large, unexpected deviations from the expected waypoints. In the initial minimal
defense system depicted in the influence relational diagram from step one, if the attacker wanted to
execute a ground-based attack of the waypoints, they had to conduct an attack to change the values at
the ground and also create a trigger to force the waypoints to update to the platform (both of which
could be embedded within the system through supply chain infiltration or done remotely.) After the
hypothetical implementation of this design pattern, the attacker still has to do both of those actions, but
they now also need to consider two additional elements. Adding Parameter Assurance inserts two new
nodes into the system influence relational diagram: the Preloaded Flight Plan Values and the Parameter

Deviation Checking Mechanism. In order to successfully execute the attack with Parameter Assurance
implemented, the adversary still needs to alter the ground station waypoints but also now needs to do
one of the following:

Report No. SERC-2014-TR-036-3 36

1. Change the preloaded table of expected waypoint values associated with the flight plan to
match their manipulated waypoints values so that the functioning comparison mechanism will
return that the values are the same.

2. Alter the parameter deviation checking mechanism so that it will not report that there is a large
deviation between the two sets of waypoints.

This increases the complexity for the adversary to successfully execute the attack. As we continue to
consider the additions of other protections, including diverse redundant components, configuration
hopping and verifiable voting, we continue to alter the asymmetry of the attack vector making it
increasingly difficult for an adversary to be able to affect change on all of the components within the
system that would be necessary to execute the attack.

Step 5

Step five is focused on evaluating the potential design patterns from step four in regards to their impact
on the defensive team. This impact can be categorized into three criteria: (1) implementation cost, (2)
lifecycle cost, and (3) collateral system impacts. Similar to the behavioral indicator variables assessed in
step three, a five point Likert scale (with possible values of Low, Low-Med, Medium, Med-High, and
High), along with an optional notes section for justifying comments, was used here for ease of
evaluation. Table 6 shows the levels assessed for each design pattern regarding implementation cost,
lifecycle cost, and collateral system impacts.

Report No. SERC-2014-TR-036-3 37

Attack Type Design Pattern Implementation Cost Lifecycle Costs Collateral

System Impacts

Ground Station Based Waypoint

Change

Data Consistency

Checking

Medium Low-Med Low

Parameter

Assurance

Low-Med Medium Medium

Change of INS Measurements Diverse

Redundancy and

Physical

Configuration

Hopping

Medium Medium Medium

Diverse

Redundancy and

Verifiable Voting

Low-Med Medium Low

Change of Parameter Data

Tables

Data Consistency

Checking

Low-Med Med-High Low

Parameter

Assurance

Med-High Medium Med-High

Addition of Bias/Noise Through

I/O Commands at Ground

State Estimation Medium Low-Med Low

Change of the HMI Display

Software

Data Consistency

Checking

Medium Low-Med Medium

Parameter

Assurance

Med-High Med-High Med-High

State Estimation Medium Low-Med Low-Med

Change of Airplane Position

Report

Diverse

Redundancy and

Physical

Configuration

Hopping

Med-High Medium Med-High

State Estimation Medium Low-Med Medium

Table 6. Implementation Cost, Lifecycle Costs, and Collateral System Impacts associated with each
applicable design pattern.

At this point, the set of possible defensive solutions can be reduced one more time based on the budget
available for implementing System-Aware security solutions and preferences regarding collateral system
impacts. Any design patterns that exceed the budget or have unacceptable collateral system impacts
can be eliminated during this step. For instance, if Med-High costs over the lifecycle of the system were
deemed to be over budget and Med-High collateral system impacts were deemed to be unacceptable,
four alternatives can be eliminated. This would leave eight available alternatives:

1. Data Consistency Checking implemented on the ground station waypoint file to prevent a
ground-based waypoint change.

Report No. SERC-2014-TR-036-3 38

2. Parameter Assurance implemented on the ground station waypoint file to prevent a ground-
based waypoint change.

3. Diverse Redundancy and Physical Configuration Hopping implemented on the INS to prevent the
alteration of the INS measurements.

4. Diverse Redundancy and Verifiable Voting implemented on the INS to prevent the alteration of
the INS measurements.

5. State Estimation implemented to prevent the addition of bias/noise through I/O commands at
the ground station.

6. Data Consistency Checking implemented on the HMI operator display at the ground station to
prevent a change of the HMI display software.

7. State Estimation implemented on the HMI operator display at the ground station to prevent a
change of the HMI display software.

8. State Estimation implemented to prevent the manipulation of the airplane position report.

While any strategies eliminated at this point do not need to be fully discussed in step six, it is important
to note that they have not been completely disregarded. Design patterns eliminated during this step will
be documented so they can be revisited at a later point if the budget or the team’s views on certain
collateral system impacts changes.

Step 6

Going into the final step, there are eight possible defensive strategies to consider, all of which increase
the difficulty for a specific adversary to complete one of their most preferred attack actions while
remaining at an acceptable impact to the defense. While eight is much more reasonable than the entire
original set of possibilities, it is still more than what the design team can afford to implement. Step six
involves all of the project participants coming together for a collaborative discussion focused on
weighing the security trade-offs that exist among these remaining alternatives in order to select a subset
to be implemented as part of the final solution. There are four factors that should be considered when
piecing together the final cohesive security architecture: (1) budget, (2) coverage, (3) multi-
dimensionality, and (4) asymmetry.

Budget is used as the initial prescreening criteria here. The project team as a whole decides that they
would like to implement about a quarter of the remaining design patterns and are comfortable with the
implementation costs associated with two or three Low-Med or Medium valued solutions. The idea of
system coverage is used as a second prescreening filter. After completing all of the analyses throughout
the framework, team members will probably have certain alternatives of interest in the remaining set
because of the areas of the system they protect or the types of attacks they protect against. For this
example, it was determined that the team was more concerned with the flight trajectory change itself
than the concealment of that change. Narrowing the coverage scope in this regard made sense because

Report No. SERC-2014-TR-036-3 39

protecting against the change itself protects the system against all three valued attack trees (rather than
just the Concealed Major Trajectory Deviation tree), and if the action to alter the flight trajectory is
difficult enough that the attacker can’t complete it, the actions to conceal it become unnecessary.
Specifically, the team wanted to focus on the possibility that the adversary would alter the navigation
via a ground-based waypoint change or alteration of the INS values on board the platform and thus
wanted to further examine the options for protecting against these threats. Three possible solutions
were constructed to be compared in a more detailed analysis:

1. Implementation of both parameter assurance and data consistency checking on the ground
station waypoint file to prevent a ground-based waypoint change.

2. Implementation of both diverse redundancy, physical configuration hopping, and verifiable
voting on the INS to prevent the alteration of the INS measurements.

3. Implementation of one defensive strategy on the ground waypoint station and one on the
INS device (specifics determined by the analysis of architectures 1 and 2).

These three architectural solutions were analyzed in regards to each one’s impact on the adversary
relative to its impact on the defense. Since there were six behavioral indicator variables used to assess
the attack actions and construct the adversary profiles, the impact of a defensive strategy can be
assessed across six different dimensions. Different defensive actions will increase the difficulty for an
attacker in different areas, and an optimal solution can be constructed by combining strategies that
complement each other in regards to the multidimensionality. The impacts associated with the
Parameter Assurance and Data Consistency Checking for Parameter Assurance and Data Consistency
Checking Implemented on the Ground Station Waypoint File are listed in Table 7.

Parameter Assurance Data Consistency Checking

Impact to Defense Impact to Adversary Impact to Defense Impact to Adversary

Implementation

Cost:

Low-Med

Design Knowledge:

Medium

Implementation

Cost: Medium

Design Knowledge:

Medium

Lifecycle Cost:

Medium

Attack-Specific

Technical Ability:

Low-Med

Lifecycle Cost:

Low-Med

Attack-Specific

Technical Ability:

Med-High

Collateral System

Impact:

Medium

Resources:

Low-Med

Collateral System

Impact:

Low

Resources:

Med

 Insider Presence

(Operational):

Low

 Insider Presence

(Operational):

Medium

Insider Presence

(Supply Chain):

Medium

Insider Presence

(Supply Chain):

Med-High

Manpower/Time:

Low-Med

Manpower/Time:

Medium

Table 7 Impact to Adversary Relative to Impact to Defense for Parameter Assurance and Data
Consistency Checking

Report No. SERC-2014-TR-036-3 40

For demonstration purposes in this project, implementation of the parameter assurance for the
waypoint change was chosen by the project team for this application and it was also enhanced to
include protection on both the ground and in the air.

3.2.1.2 Parameter-Based Attack Implementation Details

There exist multiple insertion points where a malicious adversary could embed the Trojan horse into the
Piccolo autopilot in order to divert the aircraft to another waypoint in the flight plan:

1. Directly into the Piccolo autopilot's hardware.

2. Algorithms used to control the aircraft's flight.

3. The Piccolo autopilot provides support to allow up to five external devices to connect serially
using the RS-232 protocol. Once connected, these devices are able to passively monitor the
flight status of the Piccolo autopilot, extract information from the Piccolo autopilot, and modify
the Piccolo autopilot's flight parameters.

The attack outlined in this section assumes that the adversary will utilize option (3):

 All three attack vectors will enable the adversary to alter the flight plan; however, option (3)
requires the least modification to the existing Piccolo autopilot.

 Simplifies the reconfiguration of attack parameters; e.g., option (3) makes it simpler to
experiment with alternative triggering mechanism used in the attack.

 Attack can be implemented on any platform that can send and receive using the RS-232
protocol, including laptops, desktops, SBC, etc.

For the Phase 1 implementation of the parameter-based attack, the Trojan horse has been implemented
on a laptop running Microsoft Windows 7© connected to the Piccolo autopilot over one of the available
serial connections. In addition, the Trojan horse is able to be triggered by either entering a specific
geographic region, or, to facilitate experimentation, the laptop allows for a malicious user to redirect the
aircraft to any waypoint through a simple text based interface. All testing of the attack will be performed
using the Piccolo autopilot's HiL emulation capabilities outlined in section 2. The integration of the
attack platform into the HiL can be seen in Figure 14.

Report No. SERC-2014-TR-036-3 41

Figure 14. Piccolo II HiL configuration with an Embedded Attack Platform to dynamically direct the UAV
to a specified waypoint during flight. The Embedded Attack Platform is a laptop connected to the Piccolo

II autopilot via a serial connection using the RS-232 protocol.

3.2.1.3 Masking the Parameter-Based Attack to Prevent User Detection

The attack implementation outlined in section 3.2.1.2 would be sufficient to compromise a UAV's
capacity to fulfill its designated mission. For example, an adversary would be able to use the embedded
Trojan horse to create no-fly zones for the UAV's; enabling them to operate in a given region without
the risk of detection. However, changing a UAV's flight plan mid-flight is an action that could be readily
recognized by the UAV's operator. As a result, the attack might only be effective for a short duration
before it was detected and corrected. In addition, the operator might be able to take actions to salvage
the mission; e.g., the operator might call in the assistance of one or more near-by UAVs to take over the
mid-mission. Thus, if an adversary desires such an attack to be effective over the course of multiple
missions, they will need to take steps to ensure that the attack is not easily detectable.

To reduce the risk that the embedded Trojan horse will be detected, the adversary decides to
coordinate the parameter-based attack (i.e., flight-plan alteration) with an attack against the operator

Report No. SERC-2014-TR-036-3 42

display (i.e., PCC). This attack will mask any alterations in the flight plan from the operator display.
Specifically, when the Trojan horse embedded into the Piccolo autopilot redirects the UAV to an
alternate waypoint the attack against the PCC will display the UAV flying along the previously unaltered
flight-plan.

Figure 15 shows how the attack platform used to attack the operator display is integrated into the HiL
emulation environment. In this instance, the attack is hosted on a SBC that intercepts all communication
between the operator display (PCC) and the ground station. As was the case for the Trojan horse
embedded onto the UAV, this configuration affords an easily reconfigurable attack platform to facilitate
experimentation while minimizing its impact on existing systems. It is noted that this is not the only
available point for insertion. For example, the display masking attack could be embedded into the PCC
itself.

Figure 15. Embedded attack platform for masking the operator display on a SBC.

3.2.1.4 Implementation of the Parameter-Based Attack by Compromising the PCC

As described in section 3.2.1.3, it is possible for the adversary to initiate a clandestine parameter-based
attack against the Piccolo autopilot. However, such an attack requires two embedded attack platforms
working in a coordinated fashion. Furthermore, each of these platforms has to be embedded into two
distinct subsystems. This section explores an alternative attack vector requiring the adversary to
compromise only one subsystem.

Figure 16 shows the configuration for the HiL emulation environment that initiates a ground-based
version of the same parameter-based attack as described section 3.2.1.3. For this configuration the

Report No. SERC-2014-TR-036-3 43

embedded Trojan horse responsible for initiating the parameter-based attack is embedded directly into
the PCC using its plugin capabilities. This attack has the advantage of only requiring the adversary to
compromise the ground-based operator display; however, it is also a potentially easier attack to purge.
As the attack is not embedded with the Piccolo autopilot, it can be purged mid-flight by simply swapping
in an uncompromised PCC to control the aircraft.

Figure 16. Piccolo II HiL configuration with Embedded Attack Platform to dynamically direct the UAV to a
specified waypoint during flight while masking the change from operator display. Attack is a plugin

embedded into the PCC. Embedded attack platform for masking the operator display is a SBC that sits
between the connection from the PCC and the ground station.

3.2.2 GPS System Attacks

3.2.2.1 Applying the Relational System Aware Assessment Methodology

Step 1

The process begins by identifying the critical functions of the gimbal system and defining the variables
and influence relationships among those functions. Step one is to be performed by the blue team and is
intended to outline the expected functionality of the system with minimal defensive strategies
implemented. At this point, a system influence relational diagram is constructed using DAG notation as
described previously.

Figure 17 shows the influence diagram for the gimbal camera pointing system. As seen in the diagram,
the subsystems of interest are the camera control processor, GPS, and the sensor and effector group.
The camera control processor executes SW to implement functions such as Pan-Zoom-Tilt, auto-
tracking, point of interest tracking, etc. The GPS receiver provides the necessary georeference data to

Report No. SERC-2014-TR-036-3 44

the control processor and camera to locate and track objects of interest. The sensor and effector group
provides motion-stabilization to the mounted camera during flight. The camera control processor also is
a downstream device to the GPS receiver; thus, it is also a possible host for embedded malware to alter
GPS measurements as they are streamed into the control processor. The GPS receiver, gimbal sensors
and effectors, and gimbal control processor are the three systems that most influence the success or
failure of a given surveillance mission. Of these three, the GPS receiver is of particular interest because
GPS measurements greatly influence the georeferencing of the image data from the camera.

Figure 17. Camera gimbal influence diagram.

Step 2
In step two, the red team is tasked with constructing an attack tree for the specific system function
considered in step one. In this case, it is the attacks on GPS metadata. Metadata is all of the recorded by
the gimbal and the UAV to provide a complete solution to georeferencing the surveillance information
collected by the UAV. This typically includes gimbal pointing angles, PZT of the camera, UAV attitude
data, GPS data, etc. By looking at the system from the perspective of an adversary, attack trees can be
utilized to understand the possible paths an attacker could take to exploit a specific feature of the
system. The attack tree in Figure 18 represents the possible vulnerabilities an adversary could exploit to
alter GPS measurements in the metadata stream. The attack tree is organized into four viable attacks
categories:

Report No. SERC-2014-TR-036-3 45

Supply Chain Attack on GPS Receiver: A Trojan embedded into the firmware of the GPS
receiver.

Down-stream GPS Malware Attack: An attack on a downstream device that is receiving GPS
data. The GPS data it receives is manipulated before it is used by the device.

Manipulated GPS Firmware Attack: An attack injected during system integration. In this
scenario, updated system patches or firmware for the GPS receiver is altered prior to being
loaded onto the GPS receiver.

External GPS Attack (Spoofing): Spoofing one or more GPS signals external to the UAV from a
phase-coherent spoofing device that causes the GPS receiver to falsely lock onto the spoofed
signals.

Figure 18. Attack tree for GPS attacks to alter georeference data.

In Figure 18 the attacks are organized from left to right based on difficulty of executing the attack. The
first attack is the manipulated firmware attack. GPS devices are pervasive in consumer products; as
such, the suppliers of GPS often provide open API’s and a variety of firmware packages to suit the needs
of a diverse customer base. The firmware packages offered are usually placed on a FTP server (File
Transfer Protocol) for customers to retrieve. This leaves them open to skilled adversaries who can
retrieve the GPS firmware by masquerading as a legitimate client or simply crack the FTP site. Once the
firmware binaries are downloaded, reverse engineering methods and tools can be applied to the
firmware to deduce its functionality and operations. After analysis of the firmware is complete, suitable
locations in the firmware are selected for inserting malware to alter GPS position calculations based on
trigger. The compromised malware is then delivered to a specific target system integrator or user of the
UAV. There are a number of delivery mechanisms that can be used to fool the vendors into inheriting
the compromised firmware. One such method employs special probe detectors in the vendor’s servers
that detect a request to the firmware FTP site by the vendor personnel. The probe detectors will allow
the download request to proceed, but it will swap and replace the authentic firmware with the
compromised the compromised firmware unbeknownst to the users.

Report No. SERC-2014-TR-036-3 46

The second attack is an indirect attack on GPS measurements. That is, the systems that use or process
GPS sensor data are compromised in such a way that the GPS data is altered before they can use it. This
type of attack exploits vulnerabilities in the system dataflow protocol and development tools for the
systems that use the GPS data. In this attack, the communication API’s of the system that define how
data is formatted, where certain data is identifiable by header packets, and protocol for
communications is exploited for intercepting and modifying GPS data before it is used by the
downstream device. Typically, this attack requires a man-in-the-middle attack posture. In our case the
GPS device and Gimbal Control Processor are directly connected together via a serial link. Thus, the
man-in-the-middle exploit will reside on the input of the control processor as part of the input
processing software or protocol conversion software. In either case, it requires some form of malware
to be loaded onto the control processor. The malware will alter the GPS data base on a trigger.

The next type of attack is a supply chain attack. In this case, an insider in the GPS vendor company is
colluding with an external agent to place stealthy malware deep into the GPS firmware. The insider must
have access and authorization to configure the firmware on the SW development tools, hide the
changes from test engineers, and be skilled enough to craft or insert the malware in the right place. This
type of attack requires the coordination of many complex activities involving human intelligence, skilled
adversaries to work with an insider, and circumventing product security measures. This attack is the
most difficult, only possible in the realm of highly developed adversaries, but can extremely effective.

The last type of attack is external GPS signal spoofing. All of these exploits are externally executed
through a special RF spoofing device (phase-coherent signal synthesizers)—a device that simultaneously
receives and transmits civil GPS signals. This type of attack causes the GPS receiver to falsely lock onto a
fake GPS signal that is used to provide false updates to the UAV systems. We provide this type of attack
in the tree as a measure of completeness, we do not intend to investigate countermeasures to this type
of attack as it out of scope of this project, and has been widely researched by others.

Triggers for GPS system attack are considered as well. Typically, an adversary who has embedded a GPS
exploit in the gimbal system would want to coordinate the attack with some form of trigger. An example
of a trigger could be when the gimbal camera system is deployed activate the attack, or when the GPS
stream data indicates XYZ latitude and longitude coordinates activate the attack. These triggers can be
embedded internally with malware or perhaps triggered externally. For an external trigger to work, the
adversary would have to gain access to the RF telemetry channel that is used to communicate to the
ground station. This could possibly be accomplished by spoofing the telemetry channel on duplicate but
a higher powered transmitter of the same type as the ground station. Alternatively, the ground station
software could be compromised in such a way as to stealthily upload trigger commands to the gimbal
system.

Step 3

In step three, the red and blue team develops a set of variables that can be used to assess the difficulty
of a particular attack action. These variables are called behavioral indicators and can include, but are
certainly not limited to, resources such as technical ability, time, manpower, money, equipment,

Report No. SERC-2014-TR-036-3 47

facilities, presence of an insider, and access to system design information. These variables are used to
make two separate types of judgments: leaf node assessments and adversary profile construction. The
adversary profile is the characterization of an attack agent. In our work, these are nation states, cyber-
criminal groups, terrorists groups, and rogue agents. Leaf node assessments are directed with respect
to a particular adversary group. Annotating the leaf nodes with a graded five point scale from low to
high provides the basis for pruning the attack tree to select attacks that are desirable to attackers. An
example of a pruned tree is in Figure 19, where the supply chain attack has been pruned due to the
relative difficulty of the attack for the rogue agent to perform. Pruning is always done with respect to a
specific threat agent profile; as such, the supply chain attack would not be pruned for the nation state
threat agent because it is within their capability to conduct such a complex attack.

Figure 19. Pruned Attack Tree.

Based on the analysis of step three, all attacks are within the capability of the nation state threat actors.
Rogue agents, cyber-criminals groups, and terrorists groups can execute manipulated firmware attacks
and downstream GPS attacks. Cyber-criminal groups can additionally execute GPS spoofing attacks. For
the remaining analysis in steps four through six we focus on nation state actors and evaluate cyber
defenses for the gimbal system. Based on the attack tree analysis the most desirable attacks for a
nation state actor are ranked in the following order:

1. Manipulated Firmware attacks
2. Downstream GPS malware attack
3. External Spoofing
4. Insider supply chain attack

Steps 4-6

Step three identified attack scenarios and actions that an adversary would need to take to successfully
execute an attack and those that are most attractive to a particular adversary. Based on the ranked

Report No. SERC-2014-TR-036-3 48

attack scenarios the blue team can determine which cyber defensive actions may be appropriate to
provide strong asymmetry against the attack scenarios. Referring to Table 8, the design patterns are
assessed with respect to the four attack scenarios. Column 1 is the attack scenario provided by step
three. Column 2 is the selected design pattern to defend against the attack. Column 3 is the
implementation cost of the design pattern. Column 4 is the collateral system impacts of the design
pattern; i.e., how the design pattern negatively impacts the performance of the system. The design
patterns evaluated for the GPS gimbal attacks are diverse redundancy of GPS modules and verifiable
voting of the diverse GPS module measurements. Diversity of GPS modules provides defense against
supply chain attacks. Redundancy of GPS modules provides defense against directed attacks on a
specific GPS modules firmware. Redundancy and consistency checks are required for detecting a
downstream GPS attack. Recall in a downstream attack, the source GPS module is not compromised but
the downstream components that use GPS measurements are corrupted. In this case, the downstream
devices need a consistency check on their GPS data, and this is accomplished by feeding back their GPS
measurements to the Sentinel for checking against the redundant measurements. In the presence of an
attack, the downstream received measurements would be different from the ensemble of redundant
GPS modules. GPS spoofing can be detected by a number a methods that are available in the open
literature. The Tippenhauer is one such method. The basic idea of the Tippenhauer countermeasure is
the following: four GPS receivers are placed on the UAV separated by at least 4 meters. The distances
between the GPS is accurately surveyed and known. If the GPS receivers can exchange their individual
GPS surveyed locations, they can check if their calculated locations preserve their physical formation
(within certain error bounds). In the case that the calculated GPS locations do not match the known
formation, an attack must be suspected and there should be a warning message. This defense requires
additional GPS receivers (beyond what is needed for UAV operations) to be placed on the UAV at
maximal separation points of the vehicle, such as the nose, tail and wingtips.

Attack Type Design Pattern Implementation
Cost

Collateral System
Impacts

Embedded GPS Receiver Attack

(Supply Chain Attack)
Diverse Redundancy
of GPS Modules and
Verifiable Voting

Low-Med Low-Med

Down-stream GPS Malware

Manipulation Attack
Redundancy of GPS
Modules, feedback,
Consistency checks

Med Med

External Spoofing of GPS Signal Tippenhauer Method Med-High Low-med
Manipulated GPS Firmware Attack Diverse Redundancy

of GPS Modules and
Verifiable Voting

Low-Med Low-Med

Table 8. Impact of design patterns on the system.

The final steps in the process are to weigh the security trade-offs to determine which design pattern
solutions are appropriate. The final steps are collaborative, all three teams return together and
participate in a discussion regarding the security trade-offs that exist with the potential choices. While

Report No. SERC-2014-TR-036-3 49

each defensive strategy remaining after step four has an acceptable impact on the attacker and on the
defense, some may be better choices than others based on cost, effectiveness, and complexity. To carry
out this assessment we go back to the influence diagram and instantiate the graph with the cyber-
defense design patterns we have pre-selected. The annotated graphs shows where the design patterns
are present in the system data-flow, what components are influenced by the additional
hardware/software, and the security coverage of the design pattern with respect to the system as a
whole. For sake of brevity, we provide a synopsis of the process in Table 9. The second row in the
header indicates the specific attack scenario. The third header row indicates design patterns used to
defense against the attack. The fourth header row indicates impact to designer (in terms of cost, and
collateral impacts) and impacts to adversary. In the case of adversary impacts, the behavioral indication
reflects the increase, decrease, or unchanged skills needed to carry out the attack after the design
pattern has been added. This is an indication of the asymmetry effectiveness against threat actor.
Overall, both design patterns increase asymmetry of the system. The trade-offs occur by examining the
what the designer’s costs are for implementing the design patterns versus the cost to adversary to carry
out the attack in view of the added defenses. In both cases, the costs to the adversary are significantly
increased, while the system designer’s costs are only modestly increased. In summary, both proposed
design patterns are acceptable choices to carry forward.

Gimbal GPS Metadata Attack

Embedded GPS Receiver Attack (Supply
Chain)

Down-stream GPS Malware Manipulation
Attack

Diverse Redundancy and Verifiable Voting Redundancy of GPS Modules, feedback,
Consistency checks

Impact to Defense Impact to Adversary Impact to Defense Impact to Adversary

Implementation
Cost:
Low-Med

Design Knowledge:
Increased to High

Implementation
Cost:
Med

Design Knowledge:
Increased – Med-
high

Collateral System
Impact:
Low-Med

Attack-Specific
Technical Ability:
Increased Med-High

Collateral System
Impact:
Med

Attack-Specific
Technical Ability:
Increased to Med-
High

 Resources:
Increased to High

 Resources:
Unchanged -Med

 Insider Presence
(Operational):
Increased to Med

 Insider Presence
(Operational):
Increased - Low-med

 Insider Presence
(Supply Chain):
Unchanged High

 Insider Presence
(Supply Chain):
Unchanged low

 Manpower/Time:
Increased to Med-High

 Manpower/Time:
Increased- Med-high

Table 9. Effects of System-Aware defense on the system and attacker for the gimbal GPS metadata
attack.

Report No. SERC-2014-TR-036-3 50

3.2.2.2 Introduction to GPS System Attack

Many autonomous and unmanned systems rely on GPS for navigation and control. This makes GPS an
especially enticing target for the cyber-attacker. This attack scenario assumes that malicious hardware
or software has been inserted into the GPS processor at some point along the supply chain. A triggering
mechanism is included in this malicious hardware or software so that the GPS processor will report
incorrect position information when triggered. The malicious deviation to the reported position will be
introduced in a manner so that it is difficult to distinguish the malicious deviations from natural changes
in position information.

The triggering mechanism may be external or internal to the GPS processor. An external trigger might
arrive through an external radio channel or through conditions presented by other systems or sensors in
the vehicle. An internal signal might be based on the sensed position. Thus, when the vehicle
approaches coordinates stored in the GPS processor the malicious response is triggered.

While the malicious response could involve rapid and significant corruption of the position reported by
the GPS, such rapid corruption of navigation data would be quickly and easily detected. A rapid and
significant navigation disruption might be misinterpreted as a faulty GPS processor rather than a
malicious attack, but either interpretation would prompt an immediate response to address the
problem. Thus, the attack scenario anticipates that the malicious deviations will be introduced in a
manner to make them difficult to distinguish from natural changes. An example of such masked
deviations might involve a gradual introduction of error into the position data over a period of time so
that the vehicle navigation system is slowly walked off of the correct position. The navigation system
response would be to compensate for this slowly introduced position error in order to keep the vehicle
on its intended course. These compensating corrections would slowly move the vehicle further and
further off of its intended course.

3.2.2.3 High Level Description of GPS Attack

Two illustrative examples for this attack scenario have been prepared. The first of these examples is
applied using HiL emulation in a laboratory environment. The second of these examples is applied to an
autonomous vehicle in operation. This report describes the approach taken and the results obtained for
the first of the two examples.

The first example uses the Piccolo autopilot hardware and software in the HiL emulation. The autopilot
includes both GPS and INS components, but these systems are not used for the HiL emulation. Rather,
this data is supplied by a simulator. Similarly, the autopilot normally provides control signals to actuators
that control the behavior of the vehicle. During the HiL emulation, these control signals are sent to the
simulation. Thus, the simulator establishes the initial position and orientation of the vehicle. The
autopilot has a desired path to follow, and it sends control information to the simulator in an attempt to
move the vehicle along this desired path. The simulator interprets the control information in the context
of the vehicle capabilities and determines the updated position and orientation data that is sent to the

Report No. SERC-2014-TR-036-3 51

autopilot. The particular autopilot used in this example communicates with the simulator using a CAN
bus interface as described as described in section 2.

The second example will not be allowed to influence the trajectory of the vehicle directly because of
safety concerns. However, there are enough other uses of position data on autonomous vehicles so that
the scenario can be adapted to retain its attack capabilities while not compromising safety. The
anticipated variation will apply the malicious and stealthily corrupted position to the metadata
associated with captured images. Any live images linked from the vehicle to the base station will not be
changed, but the changes in metadata will make it difficult to correlate captured data with cartographic
databases.

3.2.2.4 GPS System Attack Specifics

The first example uses HiL emulation in a laboratory environment. The particular autopilot used in this
example communicates with the simulator using a CAN bus as illustrated in Figure 20.

Figure 20. Autopilot to Simulator communications.

The figure shows that the control signals from the autopilot are conveyed to the simulator over the CAN
bus. The simulator sends status data to the autopilot that would normally come from various sensors in
the vehicle or in the autopilot. The GPS position data that would normally come from a GPS unit in the
autopilot instead comes from the simulator through the CAN bus.

The CAN bus conveys data between devices in message frames. A frame contains header information
along with the data in channels. For example, the message frame containing the GPS position data
includes two channels: one for latitude and one for longitude. Each frame is distinguishable by its
header information. Channels for each frame are then found in locations fixed for each message type
within the data portion of the frame.

3.2.2.5 The Attack Simulation

The HiL emulation configuration suggests a direct path for implementing the example attack scenario.
The simulation can be attacked by breaking the CAN bus between the autopilot and the simulator and
inserting another device that can interpret and modify the message frames. This simulated attack
configuration is illustrated in Figure 21.

Report No. SERC-2014-TR-036-3 52

Figure 21. Simulated attack configuration.

The figure shows that all message traffic between the autopilot and the simulator passes through the
attacker. For normal operations, the attacker forwards to the simulator all message frames sent by the
autopilot. The attacker also forwards to the autopilot all message frames sent by the simulator. In this
mode of operation, the HiL emulation proceeds as it would without the attacker in place. Initial
experimentation confirmed that the HiL emulation proceeded as normal when the attacker simply
forwarded all message frames in this manner.

The simulated attack requires that all message frames from the autopilot continue to be forwarded
unchanged to the simulator. Also, message frames from the simulator must continue to be forwarded
unchanged to the autopilot unless they are GPS position message frames. The attack requires that the
attacker modify the data in the channels of the GPS position message frames before it is forwarded to
the autopilot. These channels convey the latitude and longitude data to be corrupted.

The attack simulation was implemented using LabView running on a personal computer with two USB to
CAN bus converters. This personal computer acted as the attacker. The physical CAN bus between the
autopilot and the simulator was disconnected. The simulator CAN bus was connected to the attacker
computer through one of the CAN bus converters. The autopilot was connected to the attacker
computer through the other CAN bus converter. A LabView VI1 was written to accept CAN message
frames from both CAN interfaces and forward the frames received on each interface to the other
interface. In this configuration, the simulation acted as normal.

The LabView VI in the attacker computer was then modified so that all CAN message frames continued
to be forwarded as initially configured unless the CAN frames from the simulator were detected to be
GPS position frames. The channels in these GPS position frames were decoded into latitude and
longitude values and were written to a file. In addition, the LabView VI accepted latitude and longitude
corruption value inputs that were added to the latitude and longitude values before the VI reassembled
the GPS position message frame and sent it to the autopilot. Thus, the VI supported arbitrary
adjustment to the GPS position values reported to the autopilot.

1 LabView is a graphical language that is proprietary to National Instruments. A LabView VI is a Virtual
Instrument that is roughly equivalent to a computer programming routine.

Report No. SERC-2014-TR-036-3 53

As the attacker adjusted the reported GPS position, the autopilot adjusted the vehicle controls to
correct the perceived position error. Thus, the autopilot drove the vehicle off of its intended course to
correct the error introduced by the attacker. This is illustrated in Figure 22 which shows the deviation in
the UAV’s ground track.

Figure 22. Example of GPS attack.

The figure shows the intended path for the vehicle using the solid gray line. At some point, the attacker
starts moving the reported position down as shown in the figure so that the reported path deviates
below the planned path. This is shown as a dotted line in the figure. The autopilot responds by adjusting
the controls to keep the vehicle on the planned path. This actually causes the vehicle to deviate from the
planned path in a direction opposite to the malicious change. This actual path is shown as a dashed line
above the planned path in the figure. After the vehicle has moved beyond the area that the attacker
wanted to protect, the attacker reduces the malicious deviation in the reported path until the vehicle
returns to the planned pattern

3.2.3 Gimbal System Attacks

3.2.3.1 Introduction to Gimbal Attacks

UAVs are predominantly used as ISR platforms carrying sensor payloads such as EO/IR cameras,
synthetic aperture radar, signals intelligence systems, and others. As a result, sensor technology is
evolving quickly, with new sensor systems being developed for all classes of UAVs. However, in the push
to quickly field these new sensor suites and take advantage of their capabilities, cyber security is
sometimes neglected. This creates an opportunity for an attacker to compromise a mission by

Report No. SERC-2014-TR-036-3 54

exploiting weaknesses in the payload security; e.g., an attacker could degrade or deny the payload
service or spoof the information coming from it.

To investigate methods for preventing, detecting, and countering potential cyber-attacks against UAV
sensor payloads, the GTRI studied potential cyber-attacks and corresponding cyber security solutions for
the TASE 150 camera gimbal system on its GAUSS UAV. The TASE 150 is a member of the popular and
widely used family of TASE camera gimbal systems developed by Cloud Cap Technology. The following
sections describe potential attack vectors for the camera gimbal. Section 3.3.4 describes one approach
to protect against these attacks.

3.2.3.2 High Level Description of Gimbal Attack

In order to determine the simplest vector to compromise the TASE camera gimbal, the GTRI analyzed
the specifics of the TASE gimbal, the ViewPoint ground station software (used to view the video), and
the communications protocol used to issue commands to the gimbal as well as receive status updates
from the gimbal. This analysis revealed that the simplest attack vector would be to cause a denial of
service or degradation of service by sending malicious, unauthorized commands to the gimbal from a
malware exploit running on the operator interface machine (i.e., the machine hosting the PCC and
ViewPoint).

This type of attack is possible because it is assumed that the source for all gimbal commands can be
trusted. This means that as long as an attacker can communicate with the gimbal, she can have it
execute any command that she wants. In addition, there are multiple commands that can potentially be
exploited by an attack to cause a denial or degradation of service. Together, these factors suggest this
path of attack.

The attack vector chosen for this study embeds a malicious exploit into ViewPoint. Embedding the
malicious exploit is made possible by the open architecture of the ViewPoint and PCC software that
allows developers to create plug-in software modules for added functionality. In addition, the PCC and
ViewPoint allow users to go online and download maps and aerial imagery from several different map
databases. No particular security measures are in place for users downloading maps onto the machine
hosting the PCC or ViewPoint. Together these features provide a potential attack vector.

An alternative attack vector was considered that required communicating with the gimbal directly from
a rogue wireless command tower. However, it was determined that the simplest solution would be to
use the already established communication channel. In addition, solutions designed to detect malicious
data sent from the operator interface should also be able to detect malicious data sent from an
alternate source.

3.2.3.3 Gimbal Attack Specifics

The attack is an exploit embedded into ViewPoint that sends malicious data to the gimbal. The data will
be unauthorized but properly constructed command packets designed to cause a denial or degradation
of service. The exploit has the ability to construct the command data, compute the checksum, and send
it to the gimbal. In addition to sending malicious data, the exploit can also produce non-malicious data

Report No. SERC-2014-TR-036-3 55

at random intervals to attempt to hide the malicious data. The following are commands that could be
used for a degraded or denial of service attack.

3.2.3.3.1 0x00 / 0x43: Extend/Retract Gimbal
By issuing commands to retract the gimbal during critical points in the mission, an attacker can cause
the loss of a significant amount of information. By continuously issuing the command to retract the
gimbal an attacker can cause a complete denial of service of the payload.

3.2.3.3.2 0x00 / 0x70: Disable Motor Driver
As with the Retract Gimbal packet, this command can cause a similar denial of service by interfering with
the operator’s ability to steer the camera gimbal.

3.2.3.3.3 0x00 / 0x80: Gimbal Command
This command controls the location in which the gimbal is pointed. Pointing the gimbal away from the
target can cause a denial of service. Random or erratic movement of the gimbal may cause the camera
operator to assume a technical malfunction has occurred and recall the UAV.

3.2.3.3.4 0x00 / 0x40: Gyroscope Zero
This command sets the zero of the gyroscope on board the TASE gimbal. The gimbal documentation
warns that the operator should not issue this command while the gimbal is in motion. Doing so may
cause the gyroscope to be calibrated improperly, causing a degradation of service that would be difficult
to fix mid-flight. This may force a recall of the UAV. The full extent to which this would affect
performance has not yet been determined.

3.2.3.3.5 0x28 / 0x00: User Warning Packet
This packet is sent to the ViewPoint software instead of the gimbal. The software will display an error or
warning message to the operator, which may be used to social engineer the operator into aborting the
mission or taking other actions based on false information.

3.2.4 Hardware Security Against Design and Manufacturing Attacks

3.2.4.1 Introduction to Design and Manufacturing Attacks

Many attacks, including those outlined in section 3.1, could be injected into a UAV via the supply chain
or by an insider that could embed malicious hardware:

 Designer adds malicious hardware functionality, which may not be detected in code review, IC
inspection, and etc.

 Malicious functionality may be added in the fabrication process and escape detection in IC
inspection.

 An attacker can reverse engineer unencrypted bitstreams to reveal the original design, or even
modify the bitstream and add malicious functions.

 If a bitstream is encrypted using encryption algorithms such as AES, an attacker may still be able
to decrypt it by using power analysis, or physically hacking into the device and obtaining the
private key which is used for encryption.

 An inside attacker may replace or modify the hardware that is ready for deployment.

Report No. SERC-2014-TR-036-3 56

 Attacks maliciously modify data during conversion between protocols; e.g., converting RS-232 to
Ethernet.

For this project, we will focus on attacks against data protocol converters as potential attacks that
maliciously modify data during protocol conversion not only serve as a vector for compromising an UAV,
but also have the potential to compromise the Sentinel.

3.2.4.2 High Level Attack Scenarios

As outlined in sections 3.3 and 4, the proposed prototype Sentinel will need to convert information from
RS-232 into Internet protocol (IP) packets. If an adversary could compromise this functionality, they
could disable the protections afforded by the Sentinel. For example, assume that a Sentinel is
monitoring a UAV’s autopilot system. Furthermore, assume that all of the data is sent to the Sentinel
using the RS-232 protocol and is converted by the Sentinel to Ethernet to simplify the implementation of
protection algorithms. Now let us assume that an adversary has embedded a Trojan horse into the
hardware performing the conversion on the Sentinel that looks for a specific pattern in the RS-232 data
stream to trigger a denial of service attack against the Sentinel. As discussed in sections 3.3 and 4, the
protocol conversion will be implemented by running bare-metal applications on soft-cores implemented
in a field-programmable gate array (FPGA).

A FPGA was selected for its reconfigurability and flexibility that makes it favorable for the purpose of
prototyping and concept-proving. In this proposal, the soft-cores for protocol conversion and all
hardware-based protections will be implemented on FPGAs to verify their feasibility. In addition, FPGAs
may also be suitable for the purpose of deployment, because of their short design-to-product time.

The attack will be a kill switch embedded into the soft-core running on the FPGA. The attack will be
triggered by a specific pattern embedded into the RS-232 data stream. The pattern must be long enough
to avoid coinciding with normal data content. The triggering pattern will be sent from one of the RS-232
data sources, including the autopilot and camera gimbal.

Figure 23 shows the transmission of an 8-bit RS-232 data frame. The data being transmitted is the ASCII
code for the letter K (0x4B), LSB first (Least Significant Bit). The frame starts with a start bit, a logical 0
(represented by a high voltage in Figure 23), and ends with a stop bit, a logical 1 (represented by a low
voltage).

Report No. SERC-2014-TR-036-3 57

Figure 23. RS-232 Data Transmission.

When the triggering pattern is recognized, a compromised Universal Asynchronous
Receiver/Transmitter (UART) interface will perform a kill switch attack by discarding all received data.
This can be implemented by small changes in the UART receiver's logic. A more skilled and
knowledgeable attacker may be able to insert his own data into the stream and accomplish more
sophisticated attacks.

3.3 Design and Development of the Super Secure, Smart Sentinel

This section outlines the implementation of a prototype super secure smart Sentinel to protect a UAV
against the attacks outlined in section 3.1. The prototype Sentinel is capable of monitoring the
autopilots subsystems, detecting when those subsystems have been compromised (i.e., when they have
been altered through malicious activity), alert the appropriate authorities, and taking appropriate
actions to restore those subsystems to an uncompromised state. For this project, whenever the Sentinel
detects malicious activity it will alert a specially designated cyber officer responsible for ensuring the
integrity of the UAV. To ensure that such an action cannot be intercepted by an adversary, the UAV has
been equipped with a highly secured back channel that can be used by the Sentinel to communicate
critical security information and ensure that the cyber officer is able to both receive information
regarding the true state of the UAV, as well as continue to issue commands in the event the main
communications channel is compromised.

Report No. SERC-2014-TR-036-3 58

3.3.1 Sentinel Platform Development

3.3.1.1 CloudShield

The prototype system employs an off-the-shelf network security product called the CloudShield CS-2000
content processing platform (here after referred to as CloudShield) (CloudShield is shown in Figure 24)
as the Sentinel Security Platform. While CloudShield includes many of the desirable features of a
programmable Sentinel, it does not meet the size, weight, and power requirements for airborne use.
However, as seen in the analysis shown in Figure 25, it is a good environment for testing System-Aware
security design patterns due to its capacity to perform deep packet inspections of data flowing in and
out of the system, with negligible latency issues associated with the inspection process. The CloudShield
also provides a platform which allows for redundancy within the network architecture itself. We used
the CloudShield environment to develop the security design patterns supporting a ground-based
prototype version (based on SiL simulation environment of the Piccolo system) and air-based prototype
version (based HiL emulation environment) of the Sentinel which will be re-configured for actual flight in
the next phase of this work. This permits the design team to better separate the design topics of cyber
security effectiveness and the footprint requirements for flight by first developing effective algorithms
and then converting the software to operate on new, flight-capable hardware. CloudShield supported
the prototype development approach for the system Parameter Assurance and Data Consistency design
patterns.

Figure 24. CloudShield CS-2000 content processing platform with two deep packet inspection modules.

Report No. SERC-2014-TR-036-3 59

Figure 25. Comparison of CloudShield features to Sentinel requirements.

In order to protect the Sentinel from becoming a potential target for cyber-attacks, the Sentinel design
includes security features for the Sentinel itself. For the Phase 1 Sentinel these include the ability to
perform HW/SW configuration hopping by leveraging the fact that the CloudShield includes a redundant
processing module.

To integrate the CloudShield into the HiL emulation environment, it was necessary to convert
information from RS-232 into TCP/IP packets for processing. As seen in Figure 29, this was accomplished
through the usage of SBCs (Single Board Computers)--specifically the Phidgets SBC2 and Raspberry Pi. In
addition, these SBCs were used to connect the CloudShield to the secure back channel; an 802.11
network in the initial prototype. Finally, the CloudShield system also provided the capability to monitor
traffic between the PCC and the ground station. This enabled the initial prototype system to be able to
monitor the integrity of the PCC, which, in turn, enabled for the classification of cyber-attacks that
altered the UAV flight plan--i.e., directed the UAV to another waypoint--that originated from the ground
from those that originated from the autopilot from those initiated by an operator/pilot. With this
capability, an additional cyber-attack was created on the PCC. This cyber-attack performs the same
functionality as the embedded attack; i.e., it would direct the UAV to fly to another waypoint. However,
this attack would originate from a plugin maliciously installed on the PCC. Similar to the embedded
Trojan horse, this plugin directs the aircraft to a different waypoint when the UAV enters a specific
geographic region(s), as well as provides a channel that the adversary could use to direct the UAV to any
available waypoint. For this attack, the input was done by opening a back channel that the attacker
could remotely connect to in order to direct the UAV to a specific waypoint.

Report No. SERC-2014-TR-036-3 60

3.3.1.2 Raspberry Pi

The Raspberry Pi, shown in Figure 26, is a 3.4” X 2.2” X 0.8” SBC which has gained popularity because of
its affordability (approximately $35). This provides a relatively small, lightweight, and inexpensive option
to use numerous platforms for snooping or corrupting serial data. The Raspberry Pi has a 700 MHz
Armv7 based processor, and an SD card slot for memory storage. For our purposes, an 8 GB SD card is
sufficient to host the Raspbian operating system, a version of Debian Linux specifically designed for the
Raspberry Pi. The Raspberry Pi hosts C code written by the GTRI and the UVa which is responsible for
bytewise decoding of information as it is passed to and from the gimbal. It is also possible for the
Raspberry Pi to host the communications software development kit (SDK) provided by Cloud Cap. This
allows for easily maintainable and more legible C code to be used to decode the same information.

Figure 26. Raspberry Pi SBC.

3.3.1.3 SiCore SHIELD Coprocessor

During Phase 1, the focus of the work performed with SiCore has been to design a solution that
leverages the secure platform provided by the SHIELD card as a delivery mechanism for Sentinel
functionality. The result of those activities is a new version of the SHIELD card that serves as the central
interface point between the system being protected, the UAV, and the Sentinel security design patterns
that protect it. For the purposes of convenience for the demonstration of the Sentinel capabilities on
this project, we choose to eliminate some of the hardened infrastructure for the SHIELD card and
focused on adjusting the infrastructure of the card for two purposes:

1. Enabling the types of interfaces that are required to interface with the Piccolo autopilot system.
2. Protecting the data traversing the Sentinel architecture.

Report No. SERC-2014-TR-036-3 61

One of the goals in this effort was to look at delivering Sentinel functionality as a generic capability,
while demonstrating that functionality on a specific system. To that end, we have decided to use IP as
the standard protocol for Sentinel analysis functions. This particular system uses the serial RS-232
protocol for the majority of its inter-component communications. So, the conversion of RS-232 to TCP/IP
becomes an important function and a potential area of vulnerability for attack. The design effort in this
phase and described here reflect our desire to standardize the protocol and to protect that conversion
process. This design should apply equally to other types of interfaces on other systems.

The actual implementation and fabrication of the SHIELD card that is being made to support the Sentinel
for the UAV will be accomplished during Phase 2 of this project and will be outlined in section 4.2.2. That
section will also detail the design decisions that were made during Phase 1. By using the SiCore SHIELD
card, we will be adding additional potential security features to the Sentinel including protections of
data bitstream, securing storage, securing the traffic within and outside the card and utilizing the OODA
(Observe, Orient, Decide and Act) real-time controller methodology to aid in responding to events
within the Sentinel security architecture.

3.3.1.3.1 Original Card Overview
The SHIELD Coprocessor was designed and developed by Sicore Technologies. It provides a secure
enclave to store mission critical data and a secure framework to run mission critical applications. The
coprocessor is protected by anti-tamper circuitry that includes a conductive mesh, temperature sensors,
and voltage sensors. Tripping the anti-tamper circuitry causes all keys stored in the secure enclave to be
zeroized.

Figure 27. Block diagram of the Sicore SHIELD Coprocessor.

Report No. SERC-2014-TR-036-3 62

3.3.1.3.1.1 PowerPC 460EXr processor

The PPC460EXr processor runs SHIELD's secure framework called the Module Foundation Firmware
(MFF). The MFF is stored in flash memory accessible to PPC. One sector of flash is write-locked through a
hardware mechanism. The Module Foundation Firmware

 Initializes hardware on the coprocessor
 Ensures the integrity of programmable hardware on the coprocessor using the SHA256

cryptographic checksum
 Encrypts and Decrypts commands and flash memory with the AES algorithm (256 bit EBC)
 Authenticates and verifies commands from an administrator using the RSA Algorithm (4096 bit)
 Manages users and their applications
 Loads and runs critical applications as specified by a user

The PPC runs the cryptographic algorithms, but it gets the keys for the algorithms from the secure
microcontroller through the FPGA.

3.3.1.3.1.2 MAXQ1103 Secure Microcontroller

The MAXQ1103 Secure Microcontroller acts as the secure enclave for the coprocessor's cryptographic
keys. All critical software components are encrypted by keys stored in the MAXQ's zeroizable memory.
In a tamper event, the keys are zeroized, making all data encrypted by them inaccessible. The MAXQ
stores the hash of the Module Foundation Firmware as well and will not release keys to a corrupted
MFF.

Communication between the MAXQ1103 and PPC is enabled through a Cyclone II FPGA, which acts as a
conduit between the two processors that must be masters of their buses.

3.3.1.3.1.3 Additional Specifications

 512MB DDR Memory
 64GB Flash
 2x Ethernet Ports
 1x SATA Port
 PCIE 4x
 Cyclone II FPGA
 Cyclone III FPGA

3.3.2 Parameter-Based Attack Detection, Mitigation, and Restoration

To defend against the parameter-based attack outlined in section 3.2.1, a prototype super secure smart
Sentinel that is capable of monitoring the autopilots parameters, detecting when the integrity of those
parameters have been violated (i.e., when they have been altered through malicious activity), alerting
the appropriate authorities, and taking appropriate actions to restore the integrity of those parameters
(i.e., restoring them to an authorized state) has been integrated into the HiL emulation environment
(see section 2.1). As seen in Figure 28, when the parameter integrity of the autopilot has been violated
the Sentinel will alert a specially designated cyber security officer of the integrity violation. Several key
factors affected the decision to send the information to a specially designated cyber security officer:

Report No. SERC-2014-TR-036-3 63

 Pilot Workload: We did not want to increase the pilot’s workload further by making her
responsible for deciding how best to respond to a cyber-security attack.

 Desired Response: There may be more than one way to respond to a cyber-security attack
against the UAV, including allowing the attack to continue in order to gather information about
the attacker’s intention. A specially designated security officer would have the knowledge and
experience necessary to work with the UAV flight crew to make those decisions.

 Insider Attack: It is possible that the attack was the result of an insider, possibly even the pilot of
the aircraft herself! A special cyber security officer can make facilitate our ability to address the
attack without alerting the insider.

Figure 28. Super secure smart Sentinel for protection with a designated cyber security officer.

As the attack outlined in section 3.2.1 was focused on altering an UAV's flight plan by altering the UAV's
waypoints, the initial prototype Sentinel will provide the cyber security officer with information
whenever a waypoint change occurs. In addition, as the attack could originate from the Piccolo autopilot
or the operator interface, the cyber security officer will also be provided with information regarding
where the malicious attack originated. For the initial prototype, the cyber security officer can respond to
a cyber-attack in one of two ways:

1. Allow the attack to continue.

Report No. SERC-2014-TR-036-3 64

2. Restore the original flight plan.

In addition, to ensure that information sent by the Sentinel to the cyber security officer cannot be
intercepted by an adversary, the UAV has been equipped with a highly secured back channel that can be
used by the Sentinel to communicate critical security information and ensure that the operator is able to
both receive information regarding the true state of the UAV as well as continue to issue commands in
the event the main communications channel is compromised. As seen in Figure 29, for the initial
prototype this security back channel is represented as a secure 802.11 network.

The operator of the UAV may also make changes to the flight plan. As a result, the Sentinel must be
capable of being able to distinguish changes authorized by the operator (i.e., legitimate) from changes
made by the embedded Trojan horse (i.e., illegitimate). For the prototype Sentinel, this was
accomplished through the usage of an open source key logging program installed on the machine
hosting the operator/pilot interface (i.e., PCC) in order to monitor the operator's inputs and send this
information to the cyber security officer’s work station. When the Sentinel protecting the autopilot
detects a change in the flight plan, it will send an alert over the secure communications channel to the
cyber security officer. This alert will then be cross-referenced against the inputs made by the operator
for a corresponding change in flight plan. If an operator input for changing the waypoint is found, the
cyber security officer is notified of an operator change in waypoints. If no operator input directing the
UAV to another waypoint is found, then the cyber security officer is informed that a possible embedded
attack has led to the UAV being directed to another waypoint. The cyber security officer is then
presented with a list of options, which in the prototype only includes the option to restore the UAV to
the original flight plan. If the cyber security officer decides to restore the aircrafts original flight plan, a
message will be sent to the Sentinel over the secure communications channel and the Sentinel will
restore the original flight plan, and alert the cyber security officer that the flight plan has been restored.

For the initial prototype system the CloudShield was selected to provide the Sentinel functionality for
monitoring the Piccolo autopilot system. The CloudShield was selected as the prototype Sentinel to
protect against parameter-based attacks for its rapid reconfigurability and its deep packet inspection
capabilities. See section 3.3.1.1 for a more detailed description of the CloudShield platform. Figure 29
shows the architecture used to protect the Piccolo autopilot.

As discussed in section XXX, an interface for the cyber commander was for the created bench-top
prototype that provided two functions:

1. The capability to receive alerts about (un)authorized changed to the flight plan.
2. The ability to restore the original flight plan when a cyber attack has been detected.

While this has been valuable for rapid prototyping, an interface for the cyber commander with a more
robust feature set is desirable:

* Capability to display position of multiple aircraft in near real-time to the cyber commander.
* Capacity to log information to facilitate analysis, defense, restoration, and forensics.

Report No. SERC-2014-TR-036-3 65

* Ability to support human-in-the-loop experimentation.
* Developed in an environment to enhance its portability.

As a first step, we have begun the process of migrating the current cyber commander functionality to
LAMP (Linux, Apache web server, MySQL, Python) stack. This would provide a structured way to store,
retrieve, and analyze information, facilitate portability, and enable us to leverage COTS mapping
technology. Currently we have migrated the functionality into a web environment using Django; this
includes the capability to show multiple aircraft to the cyber commander using the Google Maps API.
Furthermore, cyber detections and a history of each aircraft's flight can be stored for analysis.

Figure 29. Sentinel (CloudShield) using SBC to convert data from RS-232 to TCP/IP.

As outlined in section 3.2.1, a parameter-based attack may also be launched from a compromised
operator interface (i.e., PCC). To protect against this attack an additional Sentinel was incorporated to
monitor the data flowing into and out of the PCC. For the prototype Sentinel, the CloudShield was also
selected. As the number of CloudShield CS-2000 units available was limited to one, the same
CloudShield served as the Sentinel for the PCC as for the Piccolo autopilot. The final architecture is
shown in Figure 30.

Report No. SERC-2014-TR-036-3 66

Figure 30. CloudShield Sentinel monitors Piccolo Command Center interface for integrity violations.

As a first step towards transitioning the work developed on the bench-top environment to a flight-ready
Sentinel shown in Figure 31, our team began by migrating the functionality of the CloudShield to single
compute boards (specifically the Raspberry Pi). In addition, the bench-top prototype utilized an 802.11
network to provide a secure communications backchannel for communicating security related
information and commands from the cyber commander to the Sentinel protecting the Piccolo autopilot
system. However, in order to ensure flight safety, all security communications will be transmitted using
the Piccolo's onboard radio. Thus, part of the initial migration includes modifications to send and receive
security information and commands related to Sentinel over the Piccolo's onboard radio. An interim
step which utilizes a separate radio used for sensor payload services may be utilized as the full
communications mechanism through the Piccolo’s onboard radio is developed for flight demonstrations.

Figure 31 shows the state of our miniaturization efforts. This includes:

 The partial migration of the Sentinel's functionality from the CloudShield to the single
compute boards.

Report No. SERC-2014-TR-036-3 67

Figure 31 – Early Prototype of Flight-Ready Sentinel

 Migration of the onboard status monitoring for (un)authorized changes to the UAVs
flight plan.

 Migration of the ground station status monitoring for (un)authorized changes to the
UAVs flight plan.

 Sentinel used for protecting the Piccolo autopilot sends security information through
the Piccolo's radio to the Sentinel protecting the ground stations that forwards that
information to the cyber commander for analysis. To keep this information segregated
from the information sent for normal this is done using the PAYLOAD_STREAM provided
by the Piccolo autopilot for sending user defined information.

 Communication from the ground station Sentinel to the cyber commander has been
changed from wired Ethernet to an 802.11 (b/g/n) network.

Future miniaturization efforts will include restoration capabilities (Section XXX) and the security
measures meant to enhance the security of Sentinel. Also, to allow the migration of Sentinel
functionality from the CloudShield and the development of the Sentinel SHIELD card to occur in parallel,
the current state of miniaturization uses a single compute board to provide conversion from RS-232 to
TCP/IP.

3.3.3 GPS System Attack Detection and Mitigation

Before we can describe our Phase 1 detection and attack mitigation methodologies for the GPS system,
we must first explain the proposed architecture of the diversely redundant navigation components in
the Sentinel. Next, we describe the analytical tools used to improve the system’s resiliency under an
attack. We explain how these components are implemented and how these components work together.
Third, we outline the recovery procedures built upon the analytical tools. Finally, we list the benefits of
such an approach—including the speediness of recovery compared to traditional methods and capturing
information on the adversarial strategy and motive.

Report No. SERC-2014-TR-036-3 68

We propose an architecture of several stand-alone navigation systems (i.e., GPS INS, and the Piccolo
navigation system). We plan on housing these extra redundant navigation systems in the Sentinel. Each
of these components carries diverging algorithms for navigation. The de facto Piccolo II navigation
system uses an INS and a GPS in tandem to give the autopilot the estimated location of the aircraft. The
strap-on INS calculates the aircraft location based on accumulated data from motion sensors
(accelerometers) and rotation sensors (gyroscopes) to estimate the aircraft’s position. The GPS uses
time signals from multiple GPS satellites to triangulate an aircraft’s location.

To supplement the de facto navigation system of the Piccolo II, we decided to add a secondary INS and
GPS units. These units would be supplied by a vendor different than those embedded into the Piccolo
and would connect directly to the Sentinel. The redundant INS should be able to produce the same sort
of procedures compared to the Piccolo II’s internal INS. We will use these components to verify the
behavior of each component to see if one or more of these components are performing anomalously.

In order for an adversary to successfully exploit a UAV navigation system, she must be able to
simultaneously manipulate all sensory information. Diverse redundant components—like the ones
previously described—have the potential to increase the difficulty and cost (time, resources, and labor)
to the adversary.

Frame of Discernment

The purpose of the Frame of Discernment (FOD) is to enumerate the exhaustive and mutually exclusive
scenarios. For our purposes, Table 10 shows the FOD of our UAV navigation architecture. The columns
represent each stand-alone component and the rows enumerate the possible events. The red cell
indicates an attack on its indicated component, while a yellow cell indicates a proper functioning
component. For example, we define Event 1 as the event where all components are reliable and
functioning as expected. Event 2, in contrast, is defined as the event where the Piccolo II is manipulated.
The Frame of Discernment organizes the unobservable and inscrutable events into one in which we
could compute and compare each individual event’s likelihood of taking place given the observable live
data streaming from these components.

Report No. SERC-2014-TR-036-3 69

Table 10. Frame of Discernment for Navigation Architecture.

Similarity Measurement

In this section, we tie in the concept of Similarity Measurement procedures with the Frame of
Discernment. Similarity measurements quantify the compactness and intimacy of the streaming sensor
readings against another sensor. Under this similarity procedure, we should be able to adapt to the
variability of error the sensor measurement with one another (See Appendix: Proposed Mass Function
for FOD).

Let us define Gaussian random variables , , to represent the values of the Piccolo navigation
system, INS, and GPS respectively at time . We use these random variables as elements to measure the
mass function for each the events in the FOD. As a candidate mass function, we choose for Event 1:

 () [
 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
]

The mass function will decrease as one of these random variables deviates from one another. The
maximum value of is 1 (for the case), and the minimum value is 0. We develop a list for
candidate mass function for each event in the FOD. To examine the mass functions for the rest of the
events in the FOD, refer to appendix 5.1 at the end of this report.

Analytical Equivalent Pairings

There exists analytical pairings in the FOD in which events are indiscernible with each other. These
events share an identical mass function. For example, Event 2 and Event 7 is an analytical pairing in
which we cannot discern if the Piccolo II’s navigation system is, or simultaneously both the INS and GPS,
are attacked. Although we cannot distinguish which of the event is occurring, we can palliate such
occurrences by adding additional redundant navigation components to the system; thus extending the
FOD from to events. In effect, the mass functions have to adapt to the additional
components.

For example, if , adding an barometric altimeter (ALT) and a location estimator (EST), then the
FOD table becomes:

EVENT P INS2 DGPS
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 1 1 0
6 1 0 1
7 0 1 1
8 1 1 1

Report No. SERC-2014-TR-036-3 70

Table 11. FOD with Altimeter and Location Estimator.

Using 5 navigation components, to completely control an aircraft, the adversary needs to manipulate 3
components simultaneously—increasing the difficulty of success. By increasing the number of
components to 5 and augmenting the elements of the FOD to events, we increase the difficulty
of success for the adversary by forcing the adversary to capture 3 components. Even if the adversary
successfully infiltrates the majority of the components, UAV managers have enough evidence to flag it
as a major attack and shut down the flight mission.

EVENT P INS2 DGPS ALT EST
1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 1 0
6 1 1 0 0 0
7 1 0 1 0 0
8 1 0 0 1 0
9 0 1 1 0 0
10 0 1 0 1 0
11 0 0 1 1 0
12 1 1 0 1 0
13 1 0 1 1 0
14 0 1 1 1 0
15 1 1 1 0 0
16 1 1 1 1 0
17 0 0 0 0 1
18 1 0 0 0 1
19 0 1 0 0 1
20 0 0 1 0 1
21 0 0 0 1 1
22 1 1 0 0 1
23 1 0 1 0 1
24 1 0 0 1 1
25 0 1 1 0 1
26 0 1 0 1 1
27 0 0 1 1 1
28 1 1 0 1 1
29 1 0 1 1 1
30 0 1 1 1 1
31 1 1 1 0 1
32 1 1 1 1 1

Report No. SERC-2014-TR-036-3 71

Sequential Change Detection

We propose a sliding window of size to estimate the mass function of a system. A simple average
procedure would be a reasonable and effective method for estimating the mass functions. However, it is
possible to use a Likelihood Ratio (GLR) algorithm to estimate the mass functions provided that we have
a variance matrix for each mass function. We can find using empirical tests in normal flight i.e., flight
without attacks.

The estimate then is

 ̂ ()
 (

)

Where for each in the FOD and is the vector of ones with size equal to that of
 and

∑

The event with the greatest ̂ () is the event most likely occurring. Choosing a larger would slow
down the identification of and a narrow would result in a noisier for each element in the
FOD.

As our recovery protocol, we create predetermined procedures for each element in the FOD

Suppose we have updated estimated mass functions with a sliding window of size for each time . The
event in the FOD with the highest mass function signifies the event with the highest likelihood of taking
place. For each event, we map a predetermined navigation procedure.

Table 12. Navigation procedures.

For 5 components, the proposed procedure becomes

EVENT P INS2 DGPS VERSION PROCEDURE
1 0 0 0 1 y(t) = P
2 1 0 0 2 y(t) = INS2,DGPS
3 0 1 0 3 y(t) = P
4 0 0 1 4 y(t) = P
5 1 1 0 5 y(t) = Failure
6 1 0 1 6 y(t) = Failure
7 0 1 1 7 y(t) = Failure
8 1 1 1 8 y(t) = Failure

Report No. SERC-2014-TR-036-3 72

Table 13. Procedures for five navigation components.

If we have 5 components, we force the attacker to be capable of manipulating 3 components for her to
be successful.

This approach improves the resiliency and reliability of the Navigation System and increases the

difficulty to attain success and provide the managers information on the adversarial strategy and motive.

EVENT P INS2 DGPS ALT EST VERSION PROCEDURE
1 0 0 0 0 0 1 y(t) = P
2 1 0 0 0 0 2 y(t) = INS2,DGPS
3 0 1 0 0 0 3 y(t) = P
4 0 0 1 0 0 4 y(t) = P
5 0 0 0 1 0 5 y(t) = P
6 1 1 0 0 0 6 y(t) = DGPS
7 1 0 1 0 0 7 y(t) = INS2
8 1 0 0 1 0 8 y(t) = INS2,DGPS
9 0 1 1 0 0 9 y(t) = P
10 0 1 0 1 0 10 y(t) = P
11 0 0 1 1 0 11 y(t) = P
12 1 1 0 1 0 12 y(t) = Failure
13 1 0 1 1 0 13 y(t) = Failure
14 0 1 1 1 0 14 y(t) = Failure
15 1 1 1 0 0 15 y(t) = Failure
16 1 1 1 1 0 16 y(t) = Failure
17 0 0 0 0 1 17 y(t) = P
18 1 0 0 0 1 18 y(t) = INS2,DGPS
19 0 1 0 0 1 19 y(t) = P
20 0 0 1 0 1 20 y(t) = P
21 0 0 0 1 1 21 y(t) = P
22 1 1 0 0 1 22 y(t) = Failure
23 1 0 1 0 1 23 y(t) = Failure
24 1 0 0 1 1 24 y(t) = Failure
25 0 1 1 0 1 25 y(t) = Failure
26 0 1 0 1 1 26 y(t) = Failure
27 0 0 1 1 1 27 y(t) = Failure
28 1 1 0 1 1 28 y(t) = Failure
29 1 0 1 1 1 29 y(t) = Failure
30 0 1 1 1 1 30 y(t) = Failure
31 1 1 1 0 1 31 y(t) = Failure
32 1 1 1 1 1 32 y(t) = Failure

Report No. SERC-2014-TR-036-3 73

Using this architecture with the proposed protocol, we are able to increase the difficulty of adversarial
success. The adversary is required to successfully manipulate the majority of the components. The
Frame of Discernment enables the user to compare events based on mass functions and detect which
event has the maximum likelihood of occurring. The FOD also organizes which recovery procedure to
choose in order to isolate the component under attack.

Also, using similarity measurements, we improve the recovery speed compared to simple threshold
procedures—which gives adversaries room to manipulate the aircraft, and give false negative and false
positive in noisy systems if the threshold values are incorrectly provided.

By allowing the adversary to freely manipulate the sensors without shutting down the flight mission, we
can gather information relating to the adversarial attack strategy and adversarial motive—which may be
valuable to managers and strategists. This is another important feature that the proposed procedure
provides which threshold methods do not immediately and directly deliver.

For Phase 2, we will apply the methods described above to enhance the security of the UAV flight
camera metadata

GROUND STATION

`

SENTINEL

DGPS

INS2

PICCOLO II AUTOPILOT

INS

GPS

CAMERA SYSTEM

GPS

VIDEO

INS

GPS

GPS

VIDEO

VIDEO PROCESSING

INS2

DGPS

Figure 32. Architecture for camera system.

Figure 32 summarizes the proposed defense architecture for the flight camera system of the UAV. The
box encapsulating the Piccolo II, Sentinel, and camera system modules carried on the UAV. The camera
outputs two types of streaming signals: video and metadata associated with the video stream. The
metadata includes GPS coordinates of the streaming files which an adversary could manipulate via
corrupting CAM-GPS system in the camera.

We propose to use the defense procedures for the navigation system for the use of securing the
metadata. We will continue to use diverse, redundant navigation components—GPS and INS housed in

Report No. SERC-2014-TR-036-3 74

the Sentinel, and the GPS housed in the camera system. Also available for use is the GPS and INS
navigation system for the Piccolo II.

Table 14 below enumerates the events in the FOD.

Table 14. FOD for camera system.

We will continue to use the same type of mass functions for each of the events in the FOD. This time,
however, we have four components. Let , , , be Gaussian random variables representing the
navigation measurements for each of the sensors. Then the mass function for Event 1 where all
components are reliable is

 ()

 [
 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
]

 [
 ()

 ()
] [

 ()

 ()
]

Again, we use the recovery procedures outlined in Phase 1 to determine which signals the Sentinel
should be allowed to send. Below is the recovery procedures linked with each event in the FOD.

EVENT P INS2 DGPS CAM-GPS
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
6 1 1 0 0
7 1 0 1 0
8 1 0 0 1
9 0 1 1 0
10 0 1 0 1
11 0 0 1 1
12 1 1 0 1
13 1 0 1 1
14 0 1 1 1
15 1 1 1 0
16 1 1 1 1

Report No. SERC-2014-TR-036-3 75

Table 15. Procedures for camera system.

Experimental Design for Testing Detections in Multiple GPS /INS Signal Configurations

We have designed and initiated tests of a series of ground-based experiments to investigate methods
for detecting deviations and anomalous sensors, and potential attacks on GPS and INS sensors on the
Piccolo and the external GPS sensors that will be introduced as part of the Phase 2 Sentinel
implementation. Adversaries can target these sensors by manipulating their measurement outputs and
relay falsified data that are ultimately fed back to their corresponding controllers.

Methods

Diverse Redundant Components. We are experimenting with an architecture of several stand-alone
navigation systems. A diverse redundant component system is, in this case, a system comprised of
multiple components with the same purpose. The aim of using multiple components is to avoid
downtime after a successful attack and force the attacker to manipulate multiple components. In our
proposed phase 2 design, we will equip the aircraft with the principle navigation system (Piccolo II
Autopilot) and two redundant components (a GPS and an INS).

We design these components to work in tandem such that if one component is compromised the
redundant components could succeed in restoring the system and avoid downtimes.

Redundant components also increase the difficulty of success. In order for an adversary to successfully
attack a diverse redundant system increases the difficulty of a successful attack by forcing an attacker to
manipulate multiple components simultaneously. Otherwise, if the adversaries control only one or a few
of these sensors, managers would be able to detect the intrusion and isolate the problem with relative

EVENT P INS2 DGPS CAM-GPS VERSION PROCEDURE
1 0 0 0 0 1 y(t) = CAM-GPS
2 1 0 0 0 2 y(t) = CAM-GPS
3 0 1 0 0 3 y(t) = CAM-GPS
4 0 0 1 0 4 y(t) = CAM-GPS
5 0 0 0 1 5 y(t) = DGPS
6 1 1 0 0 6 y(t) = DGPS
7 1 0 1 0 7 y(t) = CAM-GPS
8 1 0 0 1 8 y(t) = DGPS
9 0 1 1 0 9 y(t) = Failure
10 0 1 0 1 10 y(t) = Failure
11 0 0 1 1 11 y(t) = Failure
12 1 1 0 1 12 y(t) = Failure
13 1 0 1 1 13 y(t) = Failure
14 0 1 1 1 14 y(t) = Failure
15 1 1 1 0 15 y(t) = Failure
16 1 1 1 1 16 y(t) = Failure

Report No. SERC-2014-TR-036-3 76

ease. Component architecture with multiple components increases the cost of success for the
adversaries.

Frame of Discernment. Suppose we have redundant sensor components, and each component can
hold one of two mutually exclusive characteristic: OR . Let be
the universal set: the set representing all possible states of a system under consideration. The power set
 is all the set of all subsets of , including the empty set .

Using a specific example, suppose we have sensors . The system has mutually
exclusive proposition. We use similarity measurements to discern which proposition is the most likely
occurring.

Figure 33 Frame of Discernment (FOD) of 3 diverse redundant sensors for UAV navigation

For the UAV, we install 3 redundant components (See Figure 33), and each component can hold one of
two mutually exclusive characteristic: = 0 OR = 1. In Figure 33, Event 1 indicates that
all components are functioning reliably; while Event 2 indicates that all components but the Piccolo II
navigation system is functioning reliably.

Subjective Logic. Since we cannot directly observe whether or not a sensor is faulty or reputable, we rely
on the evidence taken from the sensors. We can apply methods in Subjective Logic. We apply a
detection scheme based on a subjective binary logic framework. A fundamental aspect of security is that
nobody can ever determine with absolute certainty whether a proposition about a component is true or
false. We do not know whether or not a component is attacked or it could merely be a systematic fault.
We can only make inferences based on the components’ observable behavior.

An opinion is denoted by where is the proposition in the FOD to which the opinion applies. We
assess each proposition by four characteristics 1) belief that the specified proposition is true, 2) belief
that the specified proposition is false, 3) amount of uncommitted belief (uncertainty), 4) a priori
probability of the event happening.

Let be a proposition. A binomial opinion about the truth of is the ordered quadruple
() where:

1. : belief that the specified proposition is true; an example of absolute opinion,
2. : belief that the specified proposition is false; another example of absolute opinion,
3. : amount of uncommitted belief; uncertainty
4. : priori probability in the absence of evidence

EVENT P INS2 DGPS
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 1 1 0
6 1 0 1
7 0 1 1
8 1 1 1

Report No. SERC-2014-TR-036-3 77

These components satisfy the following properties:

An opinion where is indicating that the binary logic is true while indicates that the binary
logic is false. And indicates total uncertainty.

We tie in the concept of similarity measurement procedures with each proposition in the FOD. There are
families of viable similarity measurements. In this analysis, we chose to use the general , “City Block,”
similarity measurement. For our purposes, similarity measurements quantify the compactness and
intimacy of the streaming sensor readings against another sensor. Under this similarity procedure, we
should be able to adapt to the variability of error the diverse sensor measurement with one another.

Define Gaussian random variables , , represent a multivariate values of the 3 sensory components
at time . We use these random variables as elements to measure the mass function for each the events
in the FOD. As a candidate mass function, we choose the belief function, , for Proposition 1:

 () |

| |

| |

|

And the disbelief function for Proposition 1:

 () | (

)| | (

)| | (

)|

We allow the cyber security operators to modify based on the current mission. The cyber security

operators provide us with two parameters: 1) the maximum acceptable deviation and 2) the minimum

unacceptable deviation. From there, we can deduce the values of . We believe that providing the

operators with this gives the operator more control for the allowable deviation.

The belief functions will also take into account the geometry of the earth. We will modify the belief
function to more accurately reflect the elliptical/spherical shape of the Earth. The idea is that 1 degree
difference in longitude near the equator is much farther than the 1 degree difference in longitude near
the poles. We will borrow ideas from non-Euclidean geometry to find the distance between two
coordinates. See Section 5.2 for example code for this calculation.

Different navigation components have different sampling rates which require us to interpolate data
from and between two sequential data points. In this project we use a linear interpolation technique as
we need to avoid filtering signals using the data coming from alternative components. See Section 5.2
for example code for this calculation.

Flight Simulation Experiment

To simulate the detection abilities of the algorithm, we inject the autopilot with false coordinates. Below
is the standard interaction of the autopilot and the simulator. The actuating commands is fed into the
Simulator which feeds back to the autopilot the estimated coordinates during a flight. The simulation

Report No. SERC-2014-TR-036-3 78

system is configured with an additional “Man-in-the-middle” module which enables us to alter the true
coordinates the simulator feeds into the Navigation System.

Piccolo II

Auto Pilot

Navigation System
(GPS/INS)

Simulator

ORIGINAL UNSECURE
SYSTEM

Man-in-the-middle
Module

(PC w/ LabView)

3.3.3.1 Fig. 2 Implementation of the Man-in-the-middle Module within the simulation environment

During the Flight Simulation Experiment, we will gradually change the coordinates of the aircraft and
collect the coordinates. We test 4 different longitude deviation rates:

1. 0 micro second degree deviation per 1 second
2. 4 micro second degree deviation per 1 second
3. 8 micro second degree deviation per 1 second
4. 16 micro second degree deviation per 1 second

During this experiment we would like to see how much an adversary would deviate the aircraft without
detection.

Ground-based Field Experiment

A diversely, redundant navigation sensors is a key component to the architecture. For our supplemental
navigation device we decided on the Adafruit Ultimate GPS (See Appendix for Specifications and
Properties). To test the algorithm, we designed a field experiment which we used two ground-based
vehicles to gradually deviate from one another. We recorded GPS output using an attached Linux based
EEE PC netbook.

We compare output location from two Adafruit GPSs to that of the Piccolo II GPS. We drew Latitude and
Longitude information using a Piccolo Command Center plug-in from the GPS_HEALTH packet, which
updates every six seconds.

NOTE: Initial testing was discarded due to the noise coming from the INS within the
TELEMETRY_LO_RES. Testing the GPS_HEALTH data will commence shortly.

Report No. SERC-2014-TR-036-3 79

Figure 34 – Ground-based Navigation Experimental Environment

We have designed the field experiment to have 5 different types of deviations:

1. No deviation—the two vehicles’ paths are equal
2. “Small” deviation rate
3. “Medium” deviation rate
4. “Large” deviation rate
5. “Instant” deviation rate

Results of these tests will be used to test the fidelity, judge the effects of noise and timing issues related
to this approach, and to fine-tune the models in their associated sensitivities for detecting deviations
and classifying the detections as attacks that will be used in the in-flight versions of these models.

3.3.4 Gimbal Attack Detection and Mitigation

Degradation and denial of service attacks are possible because the gimbal trusts the sender of any
commands that it receives. To prevent this type of attack, the system should be able to evaluate of any
command it receives to determine its validity.

Changes cannot be implemented in how the ViewPoint software issues commands or how the gimbal
responds to them because they are commercial products and the source code is not available. However,
it is possible to place a piece of in-line hardware or software on the UAV that receives the command
packet before the gimbal and can decide whether or not to forward it along to the gimbal based on
mission conditions.

Adafruit Ultimate GPS

ASUS EEE PC—Linux
Configuration

GPS Reciever

Report No. SERC-2014-TR-036-3 80

Several methods can be used to make decisions on the validity of gimbal commands. One method to
help catch unauthorized commands is to implement an authentication scheme, possibly by appending a
cryptographic signature to messages sent from the ViewPoint software to the gimbal. However, this will
not protect the gimbal system from the case in which a malicious agent has compromised the PCC.
Depending on the degree of compromise, the malicious agent could still be able to send messages the
UAV would consider authorized.

In a similar manner, providing additional authentication to commands capable of causing damaging
effects would be helpful but not sufficient. An attacker who has not fully compromised PCC to the point
of recovering the cryptographic key would be halted by such a defense, but further compromises may
render this ineffective.

To protect from compromises of PCC the UAV should be able to judge the legitimacy of commands. To
do this a run-time analysis can be performed to determine whether or not executing a command makes
logical sense. For example, if the system received a command to retract the gimbal while it is in a pre-
specified area of interest an intelligent decision would be to not immediately trust the command and
attempt to verify its authenticity. In addition, authorized operators should be able to issue whatever
commands they need, so there must be an override capability to verify that traditionally illogical
commands are in fact legitimate.

3.3.4.1.1 Using Mission Context to Detect Gimbal Attacks
Cloud Cap software provides flexibility for a wide variety of mission operations, which makes the system
susceptible to inside attacks involving seemingly valid commands that interfere with user operations. To
prevent these, systematic rules based on mission context have been developed to limit when and where
certain commands should be considered authentic.

The following algorithms use structures and methods from the software development kit provided by
Cloud Cap for ViewPoint plugin creation and are aimed toward detecting the attacks found most feasible
from section 3.2.3.3. Despite the following algorithm being written using an SDK, one could decode the
information bytewise from the message streams and follow the same algorithms.

3.3.4.1.1.1 Packet Detection

The method LookForGimbalPacketInQueue() searches through a queue of packets and determines if a
packet of gimbal type (i.e., a gimbal packet) is present in the message stream. It then stores this packet
in a predefined buffer. The packet is then inspected to see if the packet type is a gimbal command. All of
the vulnerabilities in section 3.2.3 fall into this type with the exception of the user warning packet.

3.3.4.1.1.2 Retract/Deploy Command Detection

The gimbal packets are further inspected to determine if the packet group is that of Gimbal command

and control group. If so, then it is passed to the method that checks if it can be decoded into a
retract/deploy struct pointer. If the method returns false the packet is ignored and the monitoring of the
stream for packets continues. If the method returns true then the stream is decoded into information
determining whether the gimbal is being commanded to either retract or deploy.

Report No. SERC-2014-TR-036-3 81

Under the assumptions that normal operations would entail the retraction and deployment of the
gimbal directly after take-off and directly before landing, the velocity of the gimbal relative to Earth and
the distance of the gimbal from the ground station should be relevant criteria to determine whether the
gimbal retract/deploy command appears to be authentic.

The aircraft velocity and position can be determined by monitoring the gimbal telemetry stream for
packets of type HOST_GPS_DATA_GIMBAL_PKTTYPE and of group
GIMBAL_POSITION_INFORMATION_GROUP. These telemetry packets can be decoded to give the GPS
position and velocity of the aircraft. These two pieces of information can be used to determine what
phase of flight the aircraft is in. If the phase is take-off or approach/landing, then the retract/deploy
command is considered authentic. If the aircraft is in cruise or loiter mode then the retract/deploy
command should be considered malicious.

3.3.4.1.1.3 Erratic Gimbal Command Detection
To protect against a Gimbal Command attack it is assumed that during normal operations the gimbal
should never be slewed to view a location above the horizon. Similar to the process in section
3.3.4.1.1.2, the telemetry stream is checked for gimbal packets in the queue. The method
DecodeGimbalCmdPacket() is used to give an elevation angle of the gimbal. Gathering the GPS
information using the same algorithm in section 3.3.4.1.1.1, the aircraft altitude is determined. If the
aircraft altitude is higher than the altitude at which the gimbal is pointed, then the command is
authentic. If the gimbal is pointed at a higher altitude than the aircraft then the command is considered
malicious and the user can be warned via a message sent through a payload message stream using the
autopilot command and control link.

Further constraints can be placed on the gimbal angles by limiting the gimbal orientation based on
mission CONOPS. For example, if the UAV mission is to loiter overhead a specified target then the gimbal
field of view should never extend outside the orbit of the aircraft.

A simple diagram illustrates the application of mission context to limit the functionality of the gimbal.

With this limited functionality, if the gimbal deviates from its intended use then a warning message will

be emitted to the Cyber Commander. Using the image centroid location, and intercepting the vehicle

center of orbit position, a comparison will be done to ensure that the tracked object is within the orbit’s

radius. This makes sense if the mission context is to circle overhead an object for recon purposes.

Report No. SERC-2014-TR-036-3 82

In steady, level flight the relationship between the aircraft’s bank angle (a), velocity (Va), and turn radius

(Ra) can be expressed as

 ()

where g is the gravity force.

The function defined as G relates the latitude and longitude of the gimbal and orbit centroid to a distance.

This is done using an ellipsoidal Earth (WGS-84) model and calculating the distances using Vincenty’s

formulae. Preliminary code has been written to implement these calculations.

An approximation of this WGS84 model using the haversine formula for a spherical Earth is represented

here:

 (

) () () () ()

where the haversin function is defined as:

 () (

)

 ()

 () (√)

Report No. SERC-2014-TR-036-3 83

 (√ () () () ()

Where φ1 and φ2 are the latitudes of point one and two, and λ1 and λ2 are the longitudes of point one
and two. R is the radius of the spherical Earth approximation. Soon this great circle distance
computation will be replaced by the WGS-84 model using an ellipsoidal Earth.

3.3.5 Hardware Security Against Design and Manufacturing Attacks

3.3.5.1 Solutions and Detection/Restoration Mechanisms

Detection of malicious or faulty operations is usually performed by adding hardware redundancy, such
as dual modular redundancy (DMR) and triple modular redundancy (TMR). With DMR recovery can be
done by periodically storing circuit states into checkpoints. When a mismatch between the two copies is
detected the latest checkpoint is used to restore the system to a correct state. With TMR a fault can be
masked by using a majority vote. The output of the voter can also be fed back to all three copies so that
they all keep the correct value.

In addition, hardware redundancy can provide fault tolerance. Radiation-induced single event upset
(SEU) can cause transient errors in electronic systems, and the error rate increases as the altitude rises.
As technology node shrinks it is more and more likely that an SEU causes multiple bit errors in a memory
cell. Therefore it is important for aircraft, such as UAVs, to be fault tolerant. When redundancy is applied
to a UAV for the purpose of security it also brings the ability of fault tolerance for free.

Assuming that a processor could be compromised by supply chain attacks, it is insecure to use three
identical processors from the same source. Thus, heterogeneous cores from different manufacturers are
considered. Processors with different instruction set architectures (ISA) are an option, but different ISAs
may result in different instruction and/or memory access orders, which significantly increase the
difficulty of synchronization. Unlike software synchronization, which can be done by inserting
synchronization points into the code, hardware synchronization can only be done by monitoring register
and memory values. Therefore heterogeneous processors with the same ISA are more favorable. The
processors can have different configurations such as speed, clock signal, cache size, and etc.

Similar to synchronization, detection and restoration of deviated operations also depend on monitoring
register and memory values. The assumption is that if multiple processors perform exactly the same
operations (e.g., write the same data to memory) on an instruction-by-instruction basis then they are
considered to have the same behavior.

3.3.5.2 Detection/restoration of hardware Trojans

Phase 1 focused on preliminary work to investigate the capability of TMR as a hardware security
technique. Figure 35 shows a block diagram of a TMR design with three cores; each core has its own
clock signal, cache and memory.

In the test design, the input signal is a 7-bit general-purpose input/output (GPIO) input which is
connected to the switches on the FPGA board. The software run by the cores inverts the 7-bit input and

Report No. SERC-2014-TR-036-3 84

sends the inverted value to GPIO output. Since the three cores run with different clock frequencies,
synchronization is required.

Figure 35. Block diagram of a FPGA configured to provide detection and recovery with TMR.

Synchronization is implemented by adding a first-in-first-out (FIFO) buffer to each of the processor. The
data written into each cache is also written into the corresponding FIFO simultaneously. When a FIFO is
empty its corresponding processor runs as normal. When a FIFO is not empty (i.e., a value has been
written into the cache) the processor halts and waits for the same instruction to be executed on other
processors. When all three FIFOs have a value a read operation is performed and the values are sent to a
voter. If the values do not agree then an LED is asserted to indicate the disagreement. Another voter is
used to determine the GPIO output which is connected to the LEDs on the FPGA board.

In Figure 35, an example hardware Trojan is inserted into core 0. If the 7-bit GPIO input is 0x0F then the
data written into the cache is 0x7F; i.e., it has been tampered with. In all the other cases, the cache
always gets the correct value. This mimics a piece of malicious hardware that is triggered by a specific
input. When the Trojan is activated it modifies data and results in incorrect output. With the TMR design
shown in Figure 35 this malicious operation can be detected and masked, assuming the other two
processors are operating correctly.

Figure 36 shows the operation of the TMR design. The lower 7-bit LEDs are GPIO input, which is 0x0F,
and therefore triggers the hardware Trojan. In this situation, the data written into cache 0 is changed to

Report No. SERC-2014-TR-036-3 85

0x7F, and the output of core 0 is therefore 0x00 (0x7F inverted). But the TMR design is able to give the
correct output, 0x70, in spite of the malicious operation in core 0. Meanwhile, the highest LED is
asserted to indicate that a disagreement is observed among the three processors.

Figure 36. TMR Detects and Masks Deviated Operation.

The idea of monitoring memory accesses can be applied to detect the attacks specific to protocol
conversion which are described in section 3.2.4, because any meaningful changes in the data flow will
eventually be seen in memory activities.

3.3.5.3 Authentication and Verification of FPGA bitstreams and ICs

For more general attacks in the supply chain, such as reverse engineering, tampering with the design
and replacement of FPGA devices, encryption and authentication of the FPGA bitstream is required.

Encryption can be used to protect a FPGA bitstream from being reverse engineered or modified. For
example, Advanced Encryption Standard (AES) uses a private key which is kept secret to both encrypt
and decrypt the data. The designer generates the private key and uses it to encrypt the bitstream. The
private key is also loaded into the target device and is used for decryption when the user loads the
bitstream to the FPGA. The vulnerability of using a single secret key is that the encryption could be
broken once the key is stolen. Since the private key is pre-loaded in the FPGA it is possible for an
attacker to obtain the key if he has physical access to the device. If the private key cannot be kept secret
then a successful decryption does not guarantee the original bitstream provided by the designer.

On the other hand, public key authentication mechanisms can provide a sign-and-verify process to
ensure security. For example, the RSA algorithm uses a private key and public key; the private key being
secret, and the public key being open. The two keys are mathematically linked, but it is impossible to
calculate the private key using only information known about the public key. The designer encrypts the

Report No. SERC-2014-TR-036-3 86

FPGA bitstream with his private key (also known as signing) and loads his public key in the FPGA device.
With the pre-loaded public key the user can decrypt the bitstream (also known as verification).
Assuming the private key is kept secret a successful decryption indicates that the bitstream is the one
signed by the designer. In authentication the private key is kept only by the designer; thus, it is much
safer than the single private key used in encryption.

Private key cryptography can provide protection against reverse engineering, but does not provide
authentication. Public key cryptography can verify an authorized message, but the message can be
viewed by anyone who has the public key, and therefore it cannot protect the IP information.

Another possible attack is that the chip, module, or board is substituted during or after manufacturing.
Detection of this kind of attack requires some form of a circuit signature. For example, physically
unclonable functions (PUF) can provides such a signature or fingerprint. When a physical stimulus is
applied to a structure it reacts in an unpredictable (but repeatable) way due to the interaction of the
stimulus with the physical microstructure of the device. This microstructure depends on physical factors
introduced during manufacture which are unpredictable. The applied stimulus is called the challenge,
and the reaction of the PUF is called the response. A specific challenge and its corresponding response
together form a challenge-response pair. The device's identity is established by the properties of the
microstructure itself. The selection of an appropriate PUF as a circuit protection mechanism is part of
our long-term future work.

Testing of Prototype Hardware Design on NetFPGA card

The initial work on testing the prototyping efforts during phase I for the protections on the for the
Hardware Security Against Design and Manufacturing Attacks has been developed and tested using the
KC705 development card. SiCore has provided a prototype card for use in the project to aid in testing
both the logical implementation of the protections and design patterns and to verify the hardware
configuration of the designs for the card that will be manufactured for the Sentinel by SiCore. The table
below describes the differences between the initial development environment and the prototype board
provided for testing by SiCore.

 KC705 NetFPGA

User FPGA Kintex-7 XC7K325T-2FFG900C Kintex-7 XC7K325T-1FFG676
Reset Active high Active low

On-board I/O 4 switches, 5 buttons, and 8 LEDs 4 buttons and 4 LEDs
UART Interface With flow control signals No flow control signals

Ethernet Interface 1 Marvell Alaska 88E1111 PHY
(MII/GMII/RGMII/SGMII)

4 Realtek RTL8211 PHYs
(RGMII only)

Table 16 – Differences between Kc705 and NetFPGA development environments

The cores that have been instantiated on for the development of the hardware security protections
have been tested using the LEON-3 soft core CPU on the FPGA onboard the KC705. The functionality that
has been developed has included sending data over the UART to the LEON-3 CPU, incorporating the
GPIO functionality of the board in the tests for functionality verification, accessing the external DDR-3
and the on-chip BRAM as memory for the tests, creating a preliminary TMR design using the on-chip

Report No. SERC-2014-TR-036-3 87

BRAM. In addition, the development work has been extended to include the UART receiving data from
the CPU and the Ethernet adapter sending data. These efforts were initially implemented using the
KC750 environment.

In recent efforts, we have endeavored to move the functionality of the initial designs over to the
NetFPGA environment. This has included successfully instantiating the LEON-3 soft core on the NetFPGA
board, resetting polarity changed from active-high to active-low, sending data from the UART, receiving
data by the UART, testing the GPIO functions (buttons, LEDs) and testing the use of on-chip BRAMs as
memory. We are currently evaluating the ability to send and receive data through the Ethernet adapter,
establishing TCP/IP streams to the Raspberry Pi portions of the Sentinel. In addition, we are investigating
the implementation of the TMR designs and verifiable voting schemes in both the KC705 and NetFPGA
test environments.

Side Thoughts of TMR and Bitstream Authentication

The design shown in Figure 35 is for the purpose of demonstration. In a real design the voter should be
put before the memory: the three copies of data written to memory are compared and voted, and the
voting result is written to the three copies of memory. This ensures that any corrupted data will be
corrected before being stored and that all of the three cores have a correct copy of data.

A UAV requires real-time operations, and as such so should the detection and restoration processes
used to protect critical systems. The voter of a TMR module will increase the delay of the data path to
memory or output signals, and may result in an extra clock cycle if the original clock speed cannot be
met. This slight change in timing should not affect the real-time requirement.

When a mismatch is detected in a system using TMR it could be the result of either a persistent
mismatch or a transient mismatch. A persistent mismatch is most likely to be caused by a permanent
fault or a cyber-attack such as malicious software and/or hardware; while a transient mismatch is most
likely to be caused by a single event upset (SEU). A transient fault should not last longer than the period
of a single instruction. Therefore, any mismatch longer than that should be considered as a persistent
one. A transient mismatch can be safely ignored, but a persistent mismatch must assert a warning to the
human operator indicating that the flagged core needs investigation or repair.

By definition, a system with TMR can tolerate up to one failed module. When a persistent mismatch is
detected it is appealing to abandon the corrupted core. However, this makes the rest of the design
vulnerable to transient faults caused by SEUs, because a SEU can still occur in the functional cores. In
this case, the hardware must be replaced as soon as possible. In the meantime, if an error is detected
(i.e., when a majority vote is not available) the system should enter a fail-safe mode. Alternatively, if
hardware support allows, it can roll back and retry.

Although TMR is an effective technique for security, it has its own Achilles' heel; i.e., the voter. Since the
voter is not triplicated, it is vulnerable to attacks. Two options are available:

1. Put the voter on a piece of trusted hardware which is kept separated from the FPGA.

Report No. SERC-2014-TR-036-3 88

2. Keep the voter in the FPGA design and leave the security concern to the FPGA bitstream.

Option (1) is promising if the design is transferred to discrete integrated circuits (ICs) in the future, and is
also useful for checking other functions on the SHIELD Coprocessor. In addition, the design of a voter is
straightforward, which makes it reasonable to put it on a piece of dedicated hardware. However, this
may lead to timing issues because data has to be sent off-chip to the voter and then sent back on-chip
again. Furthermore, the dedicated voter must be authenticated or trusted otherwise it would become a
single point of failure.

Option (2) is suitable for a FPGA design and other single-chip solutions. The authentication of the voter
can be done along with other FPGA designs. These tradeoffs need to be considered when making the
design decisions.

3.4 Evaluative Criteria

As the project has progressed from the formulation of System-Aware security patterns to a prototyping
pilot effort used for validating the System-Aware cyber security concept, our team has been addressing
a set of design-related questions that can support future efforts related to implementations of the
System Aware Cyber Security concept. The answers to these questions impact the potential viability of
using the System Aware concept in a potential application and the level of performance that can be
achieved:

 What are potential attacks? Which system components and functions are most critical to the
system? How vulnerable to attack are they, and how could an adversary do the most damage to
degrade functionality with the least cost to the adversary? In turn, which attacks can we protect
against for the least cost to us while increasing the cost and complexity to the adversary?

 What are the available data measurements from the system to be monitored? In order to
provide a reliable Sentinel platform to detect and classify anomalous behaviors and attacks in
critical functional areas, we must possess the ability to interface with and to extract data from
those critical functions. In addition, the data that can be extracted may directly affect the
security design patterns that are employed to enhance a given system’s security. For example,
as the variety of measurements about the state of a critical function increases, so does the
potential number of diversely redundant algorithms available for ensuring the integrity of that
the critical function. Finally, the amount of data that can be extracted from the Sentinel is
critical to accurately gauge the Sentinel’s ability to protect a system function and restore that
function when it is under attack.

 What should be measured to protect against potential cyber-attacks? What are the critical
pieces of information that are needed to adequately determine the state of the system? Should
new sensors be added to the system to enhance the monitoring capabilities of the Sentinel
while not degrading normal system behaviors? If information is needed from multiple parts of
the system to verify a system state, how is that information integrated to provide an accurate
system state and better detection of anomalous system behavior?

 Can we standardize the data collection protocols for collecting the data provided by the

monitored system? The ability to standardize the data extracted from system functions into a

Report No. SERC-2014-TR-036-3 89

form that can be utilized by the Sentinel is necessary to integrate with legacy systems and
facilitate reusability across a diverse set of domains. This standardization can potentially impact
the Sentinel’s ability to deal with the timing and latency issues associated with monitoring
functions, differing interfaces for the system that are required to extract the data, and the
potential collateral effects on the system function being monitored and on other parts of the
system.

 What is the rate of the data measurements that are needed to adequately detect a cyber-

attack? To understand this question, one must investigate the normal rate of change of the
system configuration, the nature of specific attacks, the rate of change in system configuration
that would be deemed to be unacceptable, the consequences of potential attacks, acceptable
responses to successful exploits, the stability of the configurations of the system, and the
sensitivity of the rate of change of those configurations related to the monitoring and detection
functions of the Sentinel.

 What are the methods needed for assuring the integrity of an operation? When looking at the
critical system functions, which security design patterns make the most impact in providing
protection for the system without hindering the operation of the system? Which patterns create
the greatest difficulty for adversaries in terms of developing alternative attacks that achieve
similar outcomes? If you distribute those security design patterns across several platforms, how
do they communicate and how often do they update each other?

 What is the complexity of the algorithms used for securing the system to be protected? We
must evaluate the complexity of the algorithms and the tradeoffs with complexity versus system
security and system performance.

 How should the Sentinel respond once an attack has been detected? Under what
circumstances does the system automatically get restored to another state? If the system is not
automatically restored, who should be informed in the event an attack has taken place? What
information should those individuals be provided, and what options are they given for
restoration? Should the attack be allowed to continue for analysis purposes so as not to tip off
the attacker that their attack has been detected?

As the ongoing project transitions from hardware-based simulation to a flight-ready hardware
implementation of the Sentinel, we will need to continue to refine the answers to these questions and
develop the methods to collect the data necessary to support evaluations of the Sentinel solutions.
Though the focus of this prototyping effort is focused on the specific Outlaw ER aircraft surveillance
system configuration and the Piccolo autopilot, these questions also need to be addressed in the
framework of how the Sentinel functionality would answer them in a more generic class of physical
systems.

Report No. SERC-2014-TR-036-3 90

4 Proposed Work for Phase II

This section outlines the Phase 2 efforts by the UVa and the GTRI to transition the System-Aware cyber
security solutions developed under RT-42 into a Sentinel configured to meet the size, weight, power and
functional requirements necessary for airborne use, including a flight-ready demonstration of the
Sentinel. As noted section 3.3.1.1, the CloudShield does not meet the weight and size requirements
necessary for airborne use. As a result, a flightworthy Sentinel will be developed based on the SiCore
SHIELD CoProcessor discussed in section 3.3.1.3. The Sentinel algorithms for detecting the attack,
alerting the operator, and taking remedial action will be based upon those developed in RT-42. The
following subsections describe the tasks that will be performed in order to conduct a flight
demonstration of the Sentinel concept.

4.1 Proposed Hardware Architecture for Flight Demonstration

Figure 37 presents the proposed system architecture for the flight demonstration. In the upper left
corner of the figure is the Piccolo autopilot. The autopilot communicates with the ground control station
through redundant radio links at 900 MHz and 450 MHz. These links are used to send command and
control signals from the ground station to the aircraft, as well as send telemetry data from the aircraft to
the ground control station. Two of the communications ports on the autopilot (Com Port 1 and 2) will be
used in the implementation of the autopilot attack (see section 3.1 for details). A Raspberry Pi SBC (RPi
1 in Figure 37) will host the parameter-based exploit developed under RT-42 that will attack the
autopilot by changing its waypoints in the mission list. To hide this attack from the UAV operator RPi 1
will also send a trigger signal to malware on the machine hosting the PCC that will hide the change to
the waypoints. This signal will be sent over one of the autopilot’s Time Processor Units (TPUs) that can
be used as discrete signal communication lines. These lines are monitored or set by the autopilot system
and their status (high or low) is encoded in the autopilot message stream. Another TPU will be used to
send a signal from the malware on the PCC to RPi 1 to signal the start of the display masking attack. In a
similar fashion, RPi 2 will host an exploit used to compromise the GPS data sent from the autopilot to
the gimbal then on to the ViewPoint software to be used to view the video (see section 3.2.2 for details).
RPi 1 and RPi 2 are both connected to the Cyber Station (lower left corner of Figure 37) via Ethernet over
a 2.4 GHz radio link. This connection will be used to communicate with the processors and trigger the
cyber-attacks during the demonstration.

The UAV Sentinel will be implemented on a SiCore SHIELD CoProcessor as shown in the center of Figure
37. Details of the UAV Sentinel are presented in section 4.2.2. The UAV Sentinel monitors serial data
traffic at the locations depicted in Figure 37 using the Raspberry Pi snooper developed under RT-42 (see
section 2.2). The Sentinel has two communication paths. The first one is an RS-232 based serial link
through Com Port 3 on the autopilot. Using this link the Sentinel can send warnings and alerts to the
UAV operator through the second payload message stream. The other communication path is over
Ethernet via the 2.4 GHz radio link, the same link used by RPi 1 and RPi 2.

Report No. SERC-2014-TR-036-3 91

TPU signal
Trigger ground attack

Autopilot ~---------·

Aircraft
Operator
Interface

Payload
Operator
Interface

Cyber
Officer

Interface

Com Port 1
Com Port 2
Com Port 3
Com Port 4

Com Port 5 J _
1

W

9---!
.,, """'"' I

Ground Station

Piccolo

Command

Center

Viewpoint

Cyber

Station

Ethernet Switch

'------7From Sentinel
RPi 1

Com Port 1: Autopilot Communications
TPU signal: Coordinate w ith Display M asking Attack

Payload Stream 2: Sentinel Warning Messages

Payload Pass-through: Gimbal data flow
Com Port 2: Dedicated 450 MHz link for secondary ground station
Rpi 1: Hosts waypointattacks
Rpi 2: Changes GPS information on gimbal
Rpi 3,4,5: Hosts voting algorithms for Sentinel

VPS

Switch

Digital

encoder

4.4 GHz

Report No. SERC-2014-TR-036-3 92

Figure 37. Architectural block diagram illustrating how the UAV SHIELD Sentinel will be integrated into the GTRI’s GAUSS platform.

On the Ground

On-board the UAV

Ground Control Computer

Legend

Autopilot
GPIO

COM1
COM2
COM3
COM4
COM5

Attack RPi 1
COM1
COM2 GPIO

Camera Gimbal
Video

Processing
System

Attack RPi 2
COM1 COM2

Ethernet Switch 1

Sentinel

COM Snoop 1
COM Snoop 2
COM Snoop 3
COM Data

900 MHz
Ground Link

450 MHz
Ground Link

2.4 GHz
Payload Radio

RS-232

Ethernet
NTSC Video

4.4 GHz Analog
Transmitter

Two RS-232 Lines

UAV Systems

Attack Platforms

Defense Systems

Ground Station
Piccolo

Command Center
Digital Video

Encoder

Cyber Station

900 MHz
Ground Link

450 MHz
Ground Link

Viewpoint
4.4 GHz Analog

Receiver

2.4 GHz
Payload Radio

GPIO

Autopilot
COM1: Autopilot comms
COM2: Payload stream 1 (inject

waypoints)
COM3: Payload stream 2 (Sentinel

warning messages)
COM4: Payload pass-through (Gimbal

data flow)
COM5: Secondary ground station link

(450 MHz)
GPIO: TPU signal to trigger ground

attacks

Attack Pi 1: Host waypoint attacks
Attack Pi 2: Gimbal GPS data scramble

Serial Tap

Serial Tap

Report No. SERC-2014-TR-036-3 93

4.2 Needed Development to Reach Next Milestones

4.2.1 Develop on-board and ground attacks

4.2.1.1 Gimbal Attack

Two of the gimbal attacks described in section 3.2.3.3 will be implemented in the flight demonstration.
These are the Extend/Retract attack (section 3.2.3.3.1) and the Gimbal Command attack (section
3.2.3.3.3). The source of these attacks will come from malware on the PCC embedded as a plugin. The
attack software will monitor the aircraft’s location by decoding the telemetry stream and reading the
GPS coordinates. The attack will be triggered when the UAV enters a predetermined geographical area.

4.2.1.2 GPS Attack

During the Phase 1 work on exploiting and monitoring the autopilot GPS system, the research team
developed algorithms to successfully manipulate GPS data in the HiL emulation environment for the
Piccolo II autopilot system and to detect anomalies in the GPS data stream. Unfortunately, this attack
utilizes the CAN bus interface, which is only available in the emulation environment. In addition, this
attack carries a risk of losing control of the aircraft during flight. However, the algorithms developed for
the attack and for the detection of the GPS attack will port directly to the serial interfaces that connect
the autopilot to other components on board the plane.

The research team has opted to demonstrate the GPS attack on board the plane by executing an attack
against the gimbal GPS instead of the autopilot GPS. The gimbal GPS data is used for locking the gimbal
on a point of interest and for geolocating tracked targets. The GPS data from the gimbal is stored as
metadata for the video imagery along with other geospatial data, indicating where the images that are
sent to the ground for processing or recording into the Cloud Cap ViewPoint software environment were
taken.

The GPS attack will be executed by a Raspberry Pi processor RPi 2 onboard the aircraft. The attack will
corrupt the GPS data from the gimbal that is stored as metadata with the video. Thus, when the video is
viewed it will have incorrect GPS coordinates associated with it. This type of attack is subtle and
removes much of the intelligence value from the video both in real time and for forensic purposes (i.e.,
if the video and its associated metadata is stored for later analytical use). The Sentinel detection
algorithms built in Phase 1 will be enhanced to include a third source of GPS data. A separate, external
GPS unit will be added to the hardware configuration on board the aircraft which will provide the
Sentinel with three sources of GPS data (the gimbal GPS, autopilot GPS and the new external GPS). This
will enable the Sentinel to employ diverse redundancy and verifiable voting security design patterns to
aid in eliminating corrupted GPS data streams and to provide restorative capabilities to the during the
flight demonstration.

4.2.1.3 Parameter-Based System Attack

The goal of this task will be to implement the parameter attack outlined in section 3.2.1 for the flight
demonstration. The in-flight demonstration of the parameter-based attack will be focused on attacking

Report No. SERC-2014-TR-036-3 94

the waypoint parameters for the flight plan; i.e., modifying the flight on the Piccolo autopilot and hiding
the attack from the operator by executing a secondary attack on the PCC.

As seen in Figure 37, the platform selected for the exploit is a Raspberry Pi SBC attached to the Piccolo
autopilot (RPi1 in Figure 37). To deploy the exploit on a Raspberry Pi will require several modifications to
the exploit developed for RT-42:

 Original exploit was developed for a laptop running the Windows 7© OS using a SDK provided by
Cloud Cap Technology. The target platform is a Raspberry Pi running the Raspbian (i.e., Linux)
OS using an updated version of the communications SDK provided by Cloud Cap Technology.
The exploit developed for RT-42 will need to be updated to use the new libraries.

 Exploit developed for RT-42 enabled a user to trigger the exploit through a simple text interface
on the local machine; this triggering option will be impossible for the flight demonstration.
Instead the trigger will be initiated either by the aircraft entering a specific geographic region or
through a remote interface provided over the 2.4 GHz channel.

 Deep packet inspection functionality that is currently utilized in the CloudShield for RT-42 will
be recreated using the Raspberry Pi platforms and the communications SDK to make the
Sentinel flight-ready.

 Additional software development and testing will be needed to ensure the application is robust
to potential failures.

 Exploit will need to be configured such that it is approved safe for a live flight demonstration.
 Exploit developed for RT-42 triggered the masking exploit on the ground using one of the user

defined payload streams available on the Piccolo autopilot.
 Exploit will need to be re-written to utilize the TPU as discussed in section 4.1. To ensure that

control over the aircraft is maintained at all times, the masking attack will be able to be started
and stopped by a user located on the ground. This channel will be independent of the remote
signal sent by the airborne exploit as well as capable of overriding it if needed.

4.2.1.4 Hardware Security against Design and Manufacturing Attacks

The Sentinel requires that the systems that interface with it standardize their interface protocols to an
IP-based protocol for Sentinel monitoring, detection and potential restoration activities. To protect the
Sentinel functionality we must protect the data protocol conversion process. In this case, the conversion
is from RS-232, the main communications protocol for the Piccolo II autopilot, to the TCP/IP protocol for
the Sentinel. In addition, we must have the same protections for TCP/IP protocol communications back
from the Sentinel to RS-232 back to the autopilot. This is required for restoration command for other
Sentinel protections.

Two of the hardware design attacks to the Sentinel's data conversion protocol will be implemented in
the flight demonstration. These are the denial-of-service attack and the data spoofing attack described
in section 3.2.4. The attack will be performed by a hardware Trojan embedded in one of the three soft-
cores located on the FGPA platform on board the SiCore UAV SHIELD card. The hardware Trojan will
monitor the RS-232 data flows. When the triggering pattern is recognized the hardware Trojan will
initiate the attack. The attack will be demonstrated via two separate triggering mechanisms: (1) by
predetermined GPS coordinates and (2) by injecting the appropriate signal from the ground station.

Report No. SERC-2014-TR-036-3 95

The three soft-cores will be implemented on the FPGA and will provide the main platform for providing
protection for the data conversions on the Sentinel platform. We will implement diverse redundancy
and verifiable voting security design patterns as protection mechanism for the data conversion
processes for the Sentinel. The three soft-cores will also provide the platform for TMR methods to
protect the data streams and conversion processes. A voter will be designed and developed to ensure
that only protected data streams are sent in and out of the Sentinel.

4.2.2 Development of the UAV Sentinel

4.2.2.1 UAV SHIELD

The processor for the UAV SHIELD is a FPGA running three soft-core processors, which run applications
developed by the UVa and the GTRI. These soft-core processors communicate with other hardware on
the UAV through four Ethernet ports and eight RS-232 serial ports. It also has an SD card used for
securely storing data. The proposed UAV Shield architecture is presented in Figure 38.

Figure 38. Proposed UAV SHIELD architectural block diagram.

4.2.2.1.1 NetFPGA-7
Many modifications were made to the design of the SHIELD Coprocessor to produce the design of the
UAV SHIELD. The hardware of the UAV SHIELD is similar Computer Measurement Lab's (CML) and
Sicore's NetFPGA-7 card (Figure 39). NetFPGA-7's capabilities include hardware mediation (SATA,
Ethernet, Memory), which is controlled by the OODA Real-time Controller. This card will be used as a
prototyping platform while the final version of the SHIELD Card for Sentinel (and for this project) is being
fabricated.

Report No. SERC-2014-TR-036-3 96

Figure 39. NetFPGA-7 architectural block diagram.

4.2.2.1.2 Modifications to SHIELD Card for the Sentinel
 Change FPGA to the Kintex 7 FPGA

An FPGA needed to be selected with the capability of running three soft-
core processors and establishing the integrity of the bitstream loaded to it.
The Kintex 7 FPGA was chosen to specify these needs. It contains more
than enough resources to instantiate the three soft-core processors and
the interfaces to the Ethernet and RS-232 ports.
For bitstream protection, at initialization, a cryptographic key associated
with the bitstream is written to non-volatile tamper-resistant memory on
the FPGA. Once written, a new key cannot be written to it. The compiler on
the development machine encrypts the bitstream, which is then
programmed to EEPROM on the UAV SHIELD. During power-up the
bitstream from the EEPROM is written to the FPGA and decrypted. This
process authenticates the bitstream and establishes its integrity. A
bitstream written by an attacker and loaded to the EEPROM would fail to
decrypt.

 Removal of the PPC460EXr
Since bitstream integrity is handled by the FPGA, the PPC460EXr was
removed from the UAV SHIELD. The cryptographic capabilities are handled
by the FPGA. Interfaces to the RS-232 and Ethernet ports are also handled
by the FPGA.

 Removal of the MAXQ1103 and Anti-Tamper Circuitry

Report No. SERC-2014-TR-036-3 97

The anti-tamper circuitry was removed to reduce the weight of the card.
With this removal, it also allowed the removal of the Cyclone II FPGA,
which acted as a conduit between the PPC and MAXQ and battery holders
which were used for backing up the MAXQ's battery-backed and zeroizable
memory.

 Removal of the PCIE Interface
The UAV SHIELD operates as a standalone card and does not interface with
a host system, which allowed the PCIE interface to be removed.

 Switch from SATA HDD to Secure Digital (SD) Card
The amount of storage offered by a SATA HDD was not needed for the UAV
SHIELD. In addition, a change to an SD card reduced the weight of the card
and the number of components with moving parts.

 Addition of RS-232 and Ethernet Interfaces
The UAV SHIELD communicates with three Raspberry Pis through Ethernet,
which required the addition of more Ethernet ports. It communicates with
other hardware on the UAV, which required the addition of an RS-232 octal
UART chip and eight RS-232 ports.

 Additional Modifications
• 512MB DDR Memory upgraded to 1GB
• 64MB Flash Memory upgraded to 128MB

4.2.2.1.3 Potential SHIELD Security Features to be Selected for Final Implementation
This printed circuit board (PCB) is designed to support the development and demonstration of
countermeasures against COTS supply chain corruption. These countermeasures are intended to defend
against potential design logic, configuration bitstream and hardware mask exploits. Insider attacks
within the supply chain are of particular concern, so multiple layers of defense are employed to help
thwart potentially malicious insider activity that may occur at various links in the chain. Defensive
capabilities are provided at the design logic, device configuration, and device mask levels. Diverse on-
board subsystems help support these capabilities.

Core supply monitoring and multi-gigabit serial I/O is provided to help support individual device
qualification against intentional mask corruption. This is made feasible via a combination of low
frequency supply measurements and high-speed on-chip timing measurements. Design configuration
bitstreams, although well-defended by manufacturer encryption methods, are still vulnerable to
potential external key discovery, insider key theft and spoofing. Support for both vendor-independent
end-to-end bitstream authentication and field installation authentication is provided to erect additional
barriers against such attacks. In addition, the design logic itself can be corrupted even though bitstream
encryption and programmable array electronics are intact. This attack vector is countered via the use of
design-independent implementation verification to detect either static or dynamic corruption of the
intended design logic.

These countermeasures combine to provide effective integrated defenses against hardware attacks at
low incremental cost to the PCB design.

Report No. SERC-2014-TR-036-3 98

Figure 40. UAV SHIELD block diagram for the the FPGA with supporting cryptographic HW.

The OODA Real-time controller is a software package that implements the OODA Loop (Figure 41). The
OODA Loop is a concept developed by military strategist and USAF Colonel John Boyd, that describes the
method that individuals and organizations process and respond to events. Entities that can process the
cycle quickly and intelligently can gain an advantage over their opponents. The loop consists of four
major elements: Observe, Orient, Decide, and Act.

Figure 41. OODA Real-time controller that implements the OODA loop on the SHIELD Coprocessor.

Report No. SERC-2014-TR-036-3 99

The OODA Real-time Controller is a multi-threaded application that implements the observe, orient,
decide, and act elements of the OODA loop in their own threads. It interfaces with various agent
applications that gather observations about the environment and execute actions as directed by the
OODA Real-time Controller. In the NetFPGA-7, these agents control the various hardware mediation
capabilities.

The NetFPGA-7 card has hardware mediation capabilities (Figure 42). There are several benefits of
hardware mediation:

 Establishing a defensive base independent of the host system.
 Monitoring capabilities to detect anomalous behavior.
 Implementing defenses without using host system resources.
 Deploying countermeasures at a hardware level 9.

Figure 42. Block diagram of the NetFPGA-7 mediators.

The Ethernet Mediator is used for network intrusion detection. It captures ingoing and outgoing raw
Ethernet packets, analyzes them, and forwards them to their destinations, during normal operation. It
possesses several capabilities:

 Network packet monitoring and logging capabilities.
 Firewall capabilities that protect a specific system from external threats and detect malicious

behavior on the host system.
 Synthetic packet injection.
 Packet redirection, through modifying the IP and MAC addresses.

Report No. SERC-2014-TR-036-3
100

The SATA Mediator protects the host system's hard drive. It captures all packets traversing between the
host system's host bust adapter (HBA) and hard disk drive (HDD). The host system's HDD can also be
accessed by firmware running on the NetFPGA-7 card without the host system's knowledge. The SATA
Mediator provides several security capabilities:

 Hardware Write-Protection of partitions and files.
 File corruption detection.
 Autonomic restoration of corrupted files.

The memory mediator provides the user with the ability to covertly access the host memory. This
capability allows the user to transparently and dynamically respond to malware. The memory mediator
can observe and modify the host system’s memory. Additionally, the mediator does not interfere with
the host processor’s access to memory. The host processor does not have any visibility into the memory
mediator’s actions. This enables cyber security systems to detect and repair subversion in near real-
time. Detection and Mitigation development on new platform

4.2.2.1.4 Gimbal Attack Detection, Mitigation, and Restoration

The detection and mitigation of the gimbal attacks will follow the methods outlined in section 3.3.4. If
the gimbal receives retract or angle commands that seem inappropriate in the context of the mission an
alert will be issued to the operator and cyber-security office.

4.2.2.1.5 Parameter-Based System Attack Detection, Mitigation, and Restoration

The following modifications are required to deploy the System-Aware cyber security protections
discussed in section 3.3.2 to defend against the parameter-based attack:

 CloudShield was chosen as the Sentinel platform for prototyping under RT-42. These protection
mechanisms will need to be developed for the UAV SHIELD. As seen in Figure 37, three
Raspberry Pi SBCs will form the platforms for hosting System-Aware algorithms for the UAV
SHIELD Sentinel. Software developed for the CloudShield will need to be ported to this new
environment:

o Configuration hopping capabilities of the CloudShield prototype.
o Cyber commander communications channel will be changed from an 802.11 wireless

network to utilizing the user defined payload stream of the Piccolo autopilot.
 The airborne Sentinel will include the Secure Voting System-Aware design pattern. As this

pattern was not part of the prototype developed under RT-42, additional development will be
needed.

 Integration work to host the parameter-based, GPS, and Gimbal detection and restoration
designs on the same platform will be required.

 Additional software development and testing will be needed to ensure the Sentinel security
functions are robust to potential failures.

 Inclusion of Diverse Redundancy System-Aware design pattern through the implementation
diverse (i.e., at least two) different implementations of the protection algorithms for the
parameter-based-attack.

Report No. SERC-2014-TR-036-3
101

4.2.2.1.6 Hardware Security against Design and Manufacturing Attacks

As stated in section 3.3.5, we propose to apply TMR to the soft-core-based protocol conversion of data
coming in from the RS-232 based communications from the Piccolo to the TCP/IP protocol for the
Sentinel. This conversion process is a potential vulnerability that needs to be protected to ensure the
Sentinel is able to fulfill its security role. The protocol converter between RS-232 and TCP/IP will be
implemented on the UAV SHIELD board provided by SiCore. A block diagram of the UAV SHIELD board is
shown in Figure 43.

Figure 43. Block Diagram of the UAV SHIELD board.

The SHIELD board contains a user FPGA (Xilinx Zynq-7000 series). Three soft-cores and their peripherals
will be implemented using the programmable logic in the FPGA in order to add the redundancy required
for security considerations. Each processor will have its own peripherals such as UART interface,
Ethernet interface, etc. Therefore TMR is applied to protect both the processors and the interfaces.

A majority voter will be implemented on the FPGA and will be used to generate a single output, masking
the incorrect data stream of the corrupted core. Since the voter is not protected by TMR it could be
vulnerable to attacks. To ensure the security of the voter, it must be developed by a trusted designer
and thoroughly inspected. Since a voter's logic is straightforward only light inspection effort will be
required. After the design process, the voter will be protected by the encryption and authentication of
FPGA bitstream.

Report No. SERC-2014-TR-036-3
102

Protocol conversion will be done bi-directionally. In the RS-232-to-Ethernet (TCP/IP) direction a RS-232
data stream comes in on the UART interface and gets triplicated and sent to the three soft-cores. When
the conversion is done the voter takes the data from the three cores and determines the result. The
output of the voter is then sent to the Ethernet interface, which wraps the data into Ethernet packets.
The Ethernet packets will be sent to three Raspberry Pi’s within the Sentinel through a network switch.
Therefore, the Ethernet interface will send each packet in the data stream to three different IP
addresses.

In the Ethernet-to-RS-232 direction the data flow is the opposite of the aforementioned process. Again,
a voter will be used to generate a single data stream before sending it back put to the UART interface.

Protocol conversion will be performed by software which runs on the soft-cores on the FPGA. The three
soft-cores will share 1 GB DRAM on the UAV SHIELD board. The EEPROM will be used for storing the
FPGA configuration bitstream. The software (a bare-metal application) for protocol conversion will be
stored in the flash memory on board the SHIELD board.

The UAV SHIELD board contains a user FPGA. For the purpose of prototyping, we propose to use LEON3
soft-core processor. LEON3 is an open source synthesizable VHDL model of a 32-bit processor compliant
with the SPARC V8 architecture. The model is highly configurable. This allows the implementation of
cores with different configurations, which is desirable for the purpose of this project. In addition, LEON3
is device-independent, which makes the design portable to other devices in the future. For prototyping
purposes, we will also make use of the NetFPGA7 card (described in section 4.2.2.1.1) from SiCore that is
similar in design to the final UAV SHIELD configuration while that final card configuration is being
fabricated.

4.2.2.1.6.1 Detection of Attacks in the Post-design Phase

In order to detect more general attacks in the supply chain, such as reverse engineering, tampering with
the design and replacement of FPGA devices, encryption and authentication of the FPGA bitstream is
required.

The Xilinx FPGA employs AES and RSA for the purpose of bitstream encryption and authentication,
respectively. These features can be used to detect and prevent supply chain attacks. Therefore the
detection of general attacks in the post-design phase supply chain can be done by this built-in feature.

The triplicated soft-cores, their peripherals, as well as extra circuits for the purpose of attacking,
detection, and restoration will be implemented on the FPGA. The three soft-cores will share 1 GB DRAM
on the SHIELD board. The EEPROM will be used for storing the FPGA bitstream. The bare-metal
application for protocol conversion will be stored in the Flash memory.

A long-term goal is to investigate the feasibility of using ARM-based cores from different vendors. One
of the advantages of the ARM architecture is that it is widely used and therefore many options are
available.

Report No. SERC-2014-TR-036-3
103

We also propose as a long-term goal to prototype for discrete ICs, and to develop IC design rules in
terms of hardware security, as well as board-level design patterns that can be generalized to any digital
IC and chip sets.

In addition, we propose to apply PUFs to the hardware. PUFs provide a way to generate a fingerprint of
a circuit and therefore can be used to authenticate a FPGA device itself.

Furthermore, recovery is required to distinguish between a transient fault caused by an SEU and a
persistent error caused by an attack. For example, if an SEU flips a bit in a FIFO, recovery is not
necessary because the data is used only once. However, if an SEU flips a bit in a memory, then recovery
is required because the same location could be read for multiple times. Both situations mentioned
above should be distinguished from an attack, in which case the malfunctioning core will be kicked out
of the system.

4.2.3 Design and Build Integrated System

The platform described in Figure 37 describes the new Sentinel platform. The on board, flight-ready
version of the Sentinel is comprised of the new SiCore UAV Shield card, three Raspberry Pis, and a small
network switch. In addition to the Sentinel hardware, there are two attack platforms (two Raspberry Pis)
that will serve as snoopers and malware injectors into the autopilot and gimbal systems.

The software components that have been developed separately for each of the attack scenarios will be
integrated on to the hardware platform described in Figure 37. In addition to the attack platforms,
Phase 2 efforts will also focus on integrating the Sentinel monitoring, detection and restoration
methodologies that have been designed and tested separately in Phase 1 into an integrated Sentinel
platform on board the flight-ready Sentinel hardware. Software development and integration activities
will run through June 2014.

4.2.3.1 Build onboard package for Sentinel and Interfaces

The components of the onboard Sentinel and attack platforms will have a supporting infrastructure on
the airframe. This will include a casing for the hardware components and the associated wiring
harnesses needed to support the interfaces for the Sentinel and the connections for the network and
attack platforms. The build of the physical hardware environment with software on board will be
completed by July, 2014

4.2.4 Ground Testing

Extensive ground testing will be conducted prior to the flight demonstration. Initial testing will be
conducted with individual components, subassemblies, and the complete system in a bench-top
environment. Afterwards the complete system will be installed in the aircraft for further ground testing.
The following subsections describe the ground test activity. Ground tests will be completed by the
middle of September, 2014.

4.2.4.1 Test integrated system in a HiL/bench-top environment

Initially the Sentinel components will be tested using the HiL emulators at the UVa and GTRI. After the
components have been verified as functioning properly, they will be integrated to form the complete

Report No. SERC-2014-TR-036-3
104

Sentinel system. This system will then be tested in the GTRI HiL emulator which best replicates the
GAUSS UAV. During the HiL emulator testing, all of the hardware and software components for the
attacks, detections, and mitigation will be verified to be functioning properly.

4.2.4.2 Move solution to airframe for on-ground testing

Once the HiL emulator testing has verified that the system is working properly on the bench-top, the
system will be installed in the GTRI GAUSS UAV. This will allow testing of the system with the actual
onboard power supplies and radio frequency (RF) modems in conjunction with the GTRI HiL emulator.
Testing will be conducted with the engine running to make sure that the vibration and electromagnetic
environments are acceptable. The test plans for the demonstration flights will be executed during the
emulator testing as a rehearsal for the actual flights.

4.2.5 Flight Testing

Two flight demonstrations are planned following the completion of the ground tests using the HiL
emulator. The flights will be conducted at the Early Co. airport in southwest Georgia. GTRI has a
Certificate of Authorization (COA) from the FAA to operate the GAUSS UAV at this general aviation
airport. The flights will take place within the boundaries of the COA shown in Figure 44. Flight testing
will run from the October through the middle of November, 2014.

Report No. SERC-2014-TR-036-3
105

Figure 44. COA Boundaries for Early Co., GA.

4.3 Required Activities, Distribution of Effort, Deliverables, Costs and Schedules

A Gantt chart of the proposed schedule for Phase 2 is presented in Table 17 in the Appendix.

4.4 On-going Evaluative Questions and Early Outcomes

As discussed in section 3.4, there are several research questions related to the implementation of a
super secure Sentinel for UAS that we hope to address in both Phase 1 and Phase 2 of this project. As we
progress through the implementation of the Sentinel for the UAV flight system, we will continuously
evaluate the practicality of each of the proposed measurements and their associated analysis algorithms
for completion within this phase of the project and present rational for cases where it proves to be
impractical while including suggestions that will serve as the basis for future implementation strategies.

What are potential attacks?

As outlined in section 3.1.3.3, our team identified and selected four exploits to protect against:

1. Waypoint, parameter attack.
2. GPS navigation attack.
3. Gimbal / Camera attack.
4. Attack against the data conversion interfaces.

What are the available data measurements from the system to be monitored?

The documentation for the Piccolo autopilot provides significant detail about the physical layout of the
autopilot and the details of the structures of the streams of data that serve to control the system. These
streams include telemetry data structures that report the orientation of the aircraft and its control
surfaces, payload data that reports mission data, gimbal stream that reports the status of the aircraft’s
TASE camera gimbal system, and general status packets which constantly update the status of the
various sub-systems controlled through the Piccolo autopilot. This off-the-shelf documentation is
available to customers of who have purchased the Piccolo autopilot.

As we look into what data needs to be collected for use in evaluating the performance of the Sentinel,
there are additional data that needs to be collected and additional analytical processes that need to be
addressed. For example, considering the attack on the GPS data affecting the imagery metadata, we
must not only track the existing autopilot GPS stream, but also analyze the data coming from the other
diverse, redundant GPS systems to be able to accurately run detection algorithms, and to classify
deviations as either cyber-attacks or system failures with desired likelihood of detection and acceptable
false alarm rates. The readings from that system must be standardized into common timing and
common formatting for comparisons within the Sentinel architecture and time series of data will need
to be recorded for use in evaluation of Sentinel performance. In addition, to evaluate the collateral
impacts of the Sentinel on the systems that are being monitored, we will need to collect data from tests

Report No. SERC-2014-TR-036-3
106

that have the Sentinel in place, and compare the results with test cases where the Sentinel is not
engaged to help gauge the impact of running the protection algorithms.

As part of the next phase, we also will need to need to collect data that will be generated by the
Sentinel, so as to produce data sets that that will allow us to evaluate the performance of different
design patterns within the Sentinel design, and analyze that data to look closely at the ability to detect
the attacks as they occur, and the performance of the system after a restoration to determine if we have
returned to normal systems operation. This will be vital in scenarios where attacks continuously repeat
themselves and when continuous corrective actions may be necessary to keeps the system functioning.

Ultimately, we would like to evaluate the feasibility of recording the entire data stream from the
autopilot, the gimbal system and the Sentinel in order to enable our ability to replay the entire flight and
use the data for forensic analysis. Where that data is collected and the realities of the physical
limitations in the on-board system may dictate how much data we can collect and where the data will
be stored.

The project team will formalize the data plan for evaluative purposes and that plan will provide the basis
for the data logging mechanisms inserted into the hardware platform and also for the algorithms that
will be used to evaluate the performance of the Sentinel protection and their effects on the monitored
subsystems.

What should be measured to protect against potential cyber-attacks

Data measurements needed to protect the UAV against the identified exploits are outlined in section
3.4.

In terms of measuring the ability to collect data needed to evaluate the ability of the Sentinel to protect
the system function under attack, Phase 2 of this project will help to identify the actual data measures
that are needed to evaluate Sentinel performance. This will include data that is recorded on the ground
and in the air and will also reflect data that is collected from both the system itself, in this case the
autopilot, gimbal and ground components, and the Sentinel architecture itself.

Can we standardize the data that is provided by the various interfaces?

As part of the investigation of the use of Sentinel protections, the UVA/GTRI team has addressed the
need to standardize the data traffic streams for analysis. For this system, RS-232 serial communications
were converted to IP (Internet Protocol) based data packets which can be used for monitoring,
detection, and for system restoration. As we look into protecting other systems, each will have its own
set of data protocols that will need to be put into a standardize format that the Sentinel technology can
use. The proliferation of the IP protocol and the large number of interfaces that allow for easy
conversion to the IP protocol make it a logical candidate for a design standard. The implications to
system latencies, timing, and other collateral effects will need to be investigated. Bench testing has
shown that this serial to IP conversion process has been stable and reliable. However, as we move into a

Report No. SERC-2014-TR-036-3
107

physical implementation, the latencies associated with the conversion process will need to be evaluated
for collateral system impacts.

The conversion from the serial data stream to IP will be protected by a triple redundant validation
scheme that will aim to ensure that the data being input to the Sentinel can be trusted. However, this
protection potentially introduces additional overhead and latencies that will need to be evaluated and
data will need to be produced to make that evaluation possible.

What is the frequency of the data measurements that we need to extract to adequately detect system

state changes that might indicate a cyber-attack?

In general, the frequency of data measurements needed to defend against a potential cyber-attack is in
human terms; i.e., seconds and minutes. For example, the system transmits status message containing
detailed information about the state of the aircraft approximately every 6 seconds, and this status
message is the most prevalent data packet in the serial data streams we observed. As outlined in section
3.4, this rate of data measurement is perfectly adequate for detecting, defending, and restoring from
several potential cyber-attacks. However, the time sensitivity of system functions may vary across the
different sub-systems and each may have different timing issues that need to be addressed to monitor
them, and also to utilize the interfaces as mechanisms for restoration when they are under attack. In
addition, we must be able to determine the sensitivity of the system in terms of false detections (or false
alarms) versus increased security.

For each of the attack scenarios, there will be a difference between when the initiation of an attack
occurs, the detection of the attack, and the time it takes for a restorative action. Those time differences
will ultimately drive us to what state we can or want to put the system back to and how we manage that
restoration while continuing normal system operation. For example, to protect the gimbal system we
are investigating the use of mission context for the evaluation and classification of a system change. If
the monitor sees a change in system commands, we must evaluate whether the context provided is
adequate to allow the change to happen or if the system should block that change. Ultimately, the
sensitivity of the change to the context will affect the number of false detections. This also raises the
need to have experimentation to help decide issues such as when to provide an alert, when to allow a
change because it is easily recoverable, when to block the change, etc. These kind of issues also allow
the human (i.e. the operator or the cyber officer) to have some input into that decision making process.

What are the methods needed for assuring the integrity of an operation?

The methods used for realizing System-Aware security are outlined in section 3.1.

What is the complexity of the algorithms used for securing the system to be protected?

As outlined in section 3.3.1, the algorithms used for protecting the UAV against the selected exploits
have been relatively small; i.e., hundreds of lines of code. However, the complexity of these algorithms
may change as the project transitions from HiL emulation to flight-ready hardware. In addition, changes
may be necessary as these algorithms are implemented in the UAV SHIELD card used to implement the

Report No. SERC-2014-TR-036-3
108

Sentinel. Thus, part of the effort for Phase 2 will be to see how the complexity of these algorithms
change based upon the constraints imposed by a UAV.

How should the Sentinel respond once an attack has been detected?

As discussed in section 3.3, as the project has progressed, it was decided to introduce a specially
designated cyber security officer to facilitate decisions about how best to respond during a cyber-attack.
Phase 1 has focused on identifying the need for and the role of the cyber security officer in ensuring that
missions are completed successfully; e.g., minimizing the workload on the aircraft’s pilot, as well as the
need for an individual with extensive knowledge of cyber-attacks. A parallel effort is being pursued to
focus on the information that should be provided to the cyber security officer, as well as how this new
individual should be integrated into the existing workflow for conducting ISR missions.

Report No. SERC-2014-TR-036-3
109

5 Appendix

5.1 Supporting Calculations for GPS System Attack

Proposed Mass Function for FOD (3 components)

Event 1 and Even 8:

 [
 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
]

Event 2 and Event 7:

 [
 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
]

Event 3 and Event 6:

 [
 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
]

Event 4 and Event 5:

 [
 ()

 ()
] [

 ()

 ()
] [

 ()

 ()
]

The probability of the difference of two Gaussian random variables and with means , and
standard deviations , respectively is the Gaussian distribution with mean and standard

deviation √

 . This automatically organizes the variability and accuracy of each sensor. This
enables the user to implement cheaper or lighter components with differing accuracy from other
components which may improving the scalability and diversity of use of this system.

GLR ALGORITHM

Let , the deviation way from , be of the form

Where is a known vector, and is an unknown scalar change magnitude. Substituting this expression
for allows one to deduce the following expression of the cumulative sum,

 ()

 () ∑

 (
)

(

)

Report No. SERC-2014-TR-036-3
110

 ∑ (

)

These probabilities are assumed to have a Gaussian distribution.

 ()

 ∑ (

) ()

 () [

∑

] ()

So,

 ̂()
 [

∑

]

In our algorithm, we have , and our estimate simplifies to

 ̂ ()
 (

)

where

∑

5.2 Code Examples for GPS

Below is the C/C++ source code for :

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

using namespace std;

double deg2rad(double deg)

{

Report No. SERC-2014-TR-036-3
111

 return deg*(PI/180);

}

double getDistance(double lat1, double lon1, double lat2, double lon2)

{

 double R = 6373; //Radius of the earth in km

 double dLat = deg2rad(lat2-lat1); //deg2rad see below

 double dLon = deg2rad(lon2-lon1);

 double a = sin(dLat/2)*sin(dLat/2)+

 cos(deg2rad(lat1))*cos(deg2rad(lat2))*

 sin(dLon/2)*sin(dLon/2);

 double c = 2*atan2(sqrt(a),sqrt(1-a));

 double d = R*c; //Distance in km

 return d;

}

Report No. SERC-2014-TR-036-3 112

Project Plan and Timeline for Phase 2 Activities

Table 17. Proposed schedule for Phase 2.

